Claude Code Plugins

Community-maintained marketplace

Feedback

Convert documents (PDF, EPUB, PPTX, DOCX, XLSX, HTML, images) to Markdown using Datalab cloud API. Use when user wants to use Datalab API for document conversion, or prefers cloud-based processing over local marker CLI.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name datalab
description Convert documents (PDF, EPUB, PPTX, DOCX, XLSX, HTML, images) to Markdown using Datalab cloud API. Use when user wants to use Datalab API for document conversion, or prefers cloud-based processing over local marker CLI.

Datalab Document Converter

Convert PDF, EPUB, PPTX, DOCX, XLSX, HTML, and image files to Markdown using the Datalab cloud API.

Prerequisites

# Install Datalab Python SDK
uv pip install datalab-python-sdk

# Set API key (get from https://www.datalab.to)
export DATALAB_API_KEY="your_api_key_here"

Python SDK Usage

Basic Conversion

from datalab_sdk import DatalabClient

client = DatalabClient()  # Uses DATALAB_API_KEY env var

# Convert document to markdown
result = client.convert("document.pdf")
print(result.markdown)

# Save output
result = client.convert(
    "document.pdf",
    save_output="./output/document"
)
# Creates: output/document.md, output/document_meta.json, output/*.png

With Options

from datalab_sdk import DatalabClient, ConvertOptions

client = DatalabClient()

options = ConvertOptions(
    output_format="markdown",  # markdown, json, html, chunks
    force_ocr=False,           # Force OCR on all pages
    paginate=True,             # Add page separators
    use_llm=True,              # Use LLM for better accuracy
    disable_image_extraction=True,  # Plain text only
    page_range="0,5-10,20"     # Specific pages
)

result = client.convert("document.pdf", options=options)

Async Client (Better Performance)

import asyncio
from datalab_sdk import AsyncDatalabClient, ConvertOptions

async def convert_document():
    async with AsyncDatalabClient() as client:
        result = await client.convert(
            "document.pdf",
            options=ConvertOptions(output_format="markdown")
        )
        return result.markdown

markdown = asyncio.run(convert_document())
print(markdown)

OCR Only

from datalab_sdk import DatalabClient

client = DatalabClient()

# OCR a document
ocr_result = client.ocr("document.pdf")
print(ocr_result.pages)  # Get all text

REST API Usage

Submit Document for Conversion

import requests

url = "https://www.datalab.to/api/v1/marker"
headers = {"X-API-Key": "YOUR_API_KEY"}

with open("document.pdf", "rb") as f:
    files = {"file": ("document.pdf", f, "application/pdf")}
    data = {
        "output_format": (None, "markdown"),
        "force_ocr": (None, "false"),
        "use_llm": (None, "false"),
        "disable_image_extraction": (None, "true")
    }
    response = requests.post(url, headers=headers, files=files, data=data)

result = response.json()
print(f"Request ID: {result['request_id']}")
print(f"Check URL: {result['request_check_url']}")

Poll for Results

import requests
import time

check_url = result['request_check_url']
headers = {"X-API-Key": "YOUR_API_KEY"}

while True:
    response = requests.get(check_url, headers=headers)
    status = response.json()

    if status.get('status') == 'complete':
        print(status['markdown'])
        break
    elif status.get('status') == 'failed':
        print(f"Error: {status.get('error')}")
        break

    time.sleep(2)  # Poll every 2 seconds

Using curl

# Submit document
curl -X POST "https://www.datalab.to/api/v1/marker" \
  -H "X-API-Key: $DATALAB_API_KEY" \
  -F "file=@document.pdf" \
  -F "output_format=markdown" \
  -F "disable_image_extraction=true"

# Check status
curl "https://www.datalab.to/api/v1/marker/{request_id}" \
  -H "X-API-Key: $DATALAB_API_KEY"

API Options

Parameter Type Description
output_format string markdown, json, html, chunks
force_ocr boolean Force OCR on all pages
paginate boolean Add page separators
use_llm boolean Use LLM for better accuracy
strip_existing_ocr boolean Remove existing OCR and re-process
disable_image_extraction boolean Plain text only
page_range string Specific pages, e.g., "0,5-10,20"
max_pages integer Maximum pages to convert

Batch Processing

import asyncio
from pathlib import Path
from datalab_sdk import AsyncDatalabClient, ConvertOptions

async def batch_convert(files: list[Path], output_dir: Path):
    output_dir.mkdir(parents=True, exist_ok=True)

    options = ConvertOptions(
        output_format="markdown",
        disable_image_extraction=True
    )

    async with AsyncDatalabClient() as client:
        tasks = [
            client.convert(
                file_path=f,
                options=options,
                save_output=output_dir / f.stem
            )
            for f in files
        ]
        results = await asyncio.gather(*tasks, return_exceptions=True)

    for f, result in zip(files, results):
        if isinstance(result, Exception):
            print(f"✗ {f.name}: {result}")
        elif result.success:
            print(f"✓ {f.name}: {result.page_count} pages")
        else:
            print(f"✗ {f.name}: {result.error}")

# Usage
files = list(Path("documents").glob("*.pdf"))
asyncio.run(batch_convert(files, Path("output")))

Error Handling

from datalab_sdk import (
    DatalabClient,
    DatalabAPIError,
    DatalabTimeoutError,
    DatalabFileError
)

client = DatalabClient()

try:
    result = client.convert("document.pdf", max_polls=60, poll_interval=2)

    if result.success:
        print(result.markdown)
    else:
        print(f"Conversion failed: {result.error}")

except DatalabAPIError as e:
    if e.status_code == 401:
        print("Authentication failed - check API key")
    elif e.status_code == 429:
        print("Rate limit exceeded - wait before retrying")
    else:
        print(f"API Error: {e}")

except DatalabTimeoutError:
    print("Operation timed out - try increasing max_polls")

except DatalabFileError as e:
    print(f"File error: {e}")

Datalab vs Marker CLI

Feature Datalab API Marker CLI
Processing Cloud-based Local
GPU Required No Yes (recommended)
Setup API key only Python + PyTorch
Speed Fast (cloud GPU) Depends on hardware
Privacy Data sent to cloud Local processing
Cost API credits Free

Instructions

  1. Confirm the input file path exists

  2. Check if $DATALAB_API_KEY environment variable is set

  3. Use AskUserQuestion tool to ask user preferences:

    Question 1 - Processing Method:

    • Header: "Method"
    • Question: "使用哪种方式调用 Datalab API?"
    • Options:
      • "Python SDK (Recommended)": 使用 datalab-python-sdk,更简洁
      • "REST API": 使用 requests 直接调用 API
      • "curl": 使用命令行 curl

    Question 2 - Image Extraction:

    • Header: "Images"
    • Question: "是否需要提取文档中的图片?"
    • Options:
      • "No (Recommended)": 仅提取文本,生成纯 Markdown
      • "Yes": 提取图片并保存
  4. Generate and run the appropriate code based on user's choice

  5. Report the output file location and any extraction notes