Claude Code Plugins

Community-maintained marketplace

Feedback

pytorch-lightning

@xiechy/climate-ai
0
0

Deep learning framework (PyTorch Lightning). Organize PyTorch code into LightningModules, configure Trainers for multi-GPU/TPU, implement data pipelines, callbacks, logging (W&B, TensorBoard), distributed training (DDP, FSDP, DeepSpeed), for scalable neural network training.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pytorch-lightning
description Deep learning framework (PyTorch Lightning). Organize PyTorch code into LightningModules, configure Trainers for multi-GPU/TPU, implement data pipelines, callbacks, logging (W&B, TensorBoard), distributed training (DDP, FSDP, DeepSpeed), for scalable neural network training.

PyTorch Lightning

Overview

PyTorch Lightning is a deep learning framework that organizes PyTorch code to eliminate boilerplate while maintaining full flexibility. Automate training workflows, multi-device orchestration, and implement best practices for neural network training and scaling across multiple GPUs/TPUs.

When to Use This Skill

This skill should be used when:

  • Building, training, or deploying neural networks using PyTorch Lightning
  • Organizing PyTorch code into LightningModules
  • Configuring Trainers for multi-GPU/TPU training
  • Implementing data pipelines with LightningDataModules
  • Working with callbacks, logging, and distributed training strategies (DDP, FSDP, DeepSpeed)
  • Structuring deep learning projects professionally

Core Capabilities

1. LightningModule - Model Definition

Organize PyTorch models into six logical sections:

  1. Initialization - __init__() and setup()
  2. Training Loop - training_step(batch, batch_idx)
  3. Validation Loop - validation_step(batch, batch_idx)
  4. Test Loop - test_step(batch, batch_idx)
  5. Prediction - predict_step(batch, batch_idx)
  6. Optimizer Configuration - configure_optimizers()

Quick template reference: See scripts/template_lightning_module.py for a complete boilerplate.

Detailed documentation: Read references/lightning_module.md for comprehensive method documentation, hooks, properties, and best practices.

2. Trainer - Training Automation

The Trainer automates the training loop, device management, gradient operations, and callbacks. Key features:

  • Multi-GPU/TPU support with strategy selection (DDP, FSDP, DeepSpeed)
  • Automatic mixed precision training
  • Gradient accumulation and clipping
  • Checkpointing and early stopping
  • Progress bars and logging

Quick setup reference: See scripts/quick_trainer_setup.py for common Trainer configurations.

Detailed documentation: Read references/trainer.md for all parameters, methods, and configuration options.

3. LightningDataModule - Data Pipeline Organization

Encapsulate all data processing steps in a reusable class:

  1. prepare_data() - Download and process data (single-process)
  2. setup() - Create datasets and apply transforms (per-GPU)
  3. train_dataloader() - Return training DataLoader
  4. val_dataloader() - Return validation DataLoader
  5. test_dataloader() - Return test DataLoader

Quick template reference: See scripts/template_datamodule.py for a complete boilerplate.

Detailed documentation: Read references/data_module.md for method details and usage patterns.

4. Callbacks - Extensible Training Logic

Add custom functionality at specific training hooks without modifying your LightningModule. Built-in callbacks include:

  • ModelCheckpoint - Save best/latest models
  • EarlyStopping - Stop when metrics plateau
  • LearningRateMonitor - Track LR scheduler changes
  • BatchSizeFinder - Auto-determine optimal batch size

Detailed documentation: Read references/callbacks.md for built-in callbacks and custom callback creation.

5. Logging - Experiment Tracking

Integrate with multiple logging platforms:

  • TensorBoard (default)
  • Weights & Biases (WandbLogger)
  • MLflow (MLFlowLogger)
  • Neptune (NeptuneLogger)
  • Comet (CometLogger)
  • CSV (CSVLogger)

Log metrics using self.log("metric_name", value) in any LightningModule method.

Detailed documentation: Read references/logging.md for logger setup and configuration.

6. Distributed Training - Scale to Multiple Devices

Choose the right strategy based on model size:

  • DDP - For models <500M parameters (ResNet, smaller transformers)
  • FSDP - For models 500M+ parameters (large transformers, recommended for Lightning users)
  • DeepSpeed - For cutting-edge features and fine-grained control

Configure with: Trainer(strategy="ddp", accelerator="gpu", devices=4)

Detailed documentation: Read references/distributed_training.md for strategy comparison and configuration.

7. Best Practices

  • Device agnostic code - Use self.device instead of .cuda()
  • Hyperparameter saving - Use self.save_hyperparameters() in __init__()
  • Metric logging - Use self.log() for automatic aggregation across devices
  • Reproducibility - Use seed_everything() and Trainer(deterministic=True)
  • Debugging - Use Trainer(fast_dev_run=True) to test with 1 batch

Detailed documentation: Read references/best_practices.md for common patterns and pitfalls.

Quick Workflow

  1. Define model:

    class MyModel(L.LightningModule):
        def __init__(self):
            super().__init__()
            self.save_hyperparameters()
            self.model = YourNetwork()
    
        def training_step(self, batch, batch_idx):
            x, y = batch
            loss = F.cross_entropy(self.model(x), y)
            self.log("train_loss", loss)
            return loss
    
        def configure_optimizers(self):
            return torch.optim.Adam(self.parameters())
    
  2. Prepare data:

    # Option 1: Direct DataLoaders
    train_loader = DataLoader(train_dataset, batch_size=32)
    
    # Option 2: LightningDataModule (recommended for reusability)
    dm = MyDataModule(batch_size=32)
    
  3. Train:

    trainer = L.Trainer(max_epochs=10, accelerator="gpu", devices=2)
    trainer.fit(model, train_loader)  # or trainer.fit(model, datamodule=dm)
    

Resources

scripts/

Executable Python templates for common PyTorch Lightning patterns:

  • template_lightning_module.py - Complete LightningModule boilerplate
  • template_datamodule.py - Complete LightningDataModule boilerplate
  • quick_trainer_setup.py - Common Trainer configuration examples

references/

Detailed documentation for each PyTorch Lightning component:

  • lightning_module.md - Comprehensive LightningModule guide (methods, hooks, properties)
  • trainer.md - Trainer configuration and parameters
  • data_module.md - LightningDataModule patterns and methods
  • callbacks.md - Built-in and custom callbacks
  • logging.md - Logger integrations and usage
  • distributed_training.md - DDP, FSDP, DeepSpeed comparison and setup
  • best_practices.md - Common patterns, tips, and pitfalls