| name | bg-remover |
| description | Remove backgrounds from images using FAL.ai's BiRefNet model. Use when users ask to remove background, make transparent PNG, extract subject from image, or create cutouts. Trigger phrases include "remove background", "transparent background", "cut out", "extract subject", or any background removal request. |
Background Remover Skill
Remove backgrounds from images using FAL.ai's BiRefNet v2 model. Uses Bun for fast TypeScript execution with inline scripts.
Prerequisites
This skill requires:
- Bun - Fast JavaScript runtime
- FAL_KEY - FAL.ai API key set as environment variable
Checking for Bun
Before running scripts, verify Bun is installed:
which bun
If Bun is not installed, ask the user for permission before installing:
npm install -g bun
Setting up FAL.ai
- Get an API key from https://fal.ai/dashboard/keys
- Set the environment variable:
export FAL_KEY="your-key-here"
Basic Usage
Remove background from an image using a heredoc script:
bun run - << 'EOF'
import { fal } from "@fal-ai/client";
import { readFileSync, writeFileSync } from "fs";
import { basename, dirname, join } from "path";
const imagePath = "INPUT_IMAGE_PATH";
const imageBuffer = readFileSync(imagePath);
const fileName = basename(imagePath);
const mimeType = imagePath.endsWith(".png") ? "image/png" : "image/jpeg";
// Upload to FAL storage
const file = new File([imageBuffer], fileName, { type: mimeType });
const imageUrl = await fal.storage.upload(file);
console.log("Uploaded:", imageUrl);
// Remove background
const result = await fal.subscribe("fal-ai/birefnet/v2", {
input: {
image_url: imageUrl,
model: "General Use (Light)",
operating_resolution: "1024x1024",
output_format: "png"
},
logs: true,
onQueueUpdate: (update) => {
if (update.status === "IN_PROGRESS" && update.logs) {
update.logs.map((log) => log.message).forEach(console.log);
}
},
});
// Download and save result
const outputUrl = result.data.image.url;
const response = await fetch(outputUrl);
const buffer = Buffer.from(await response.arrayBuffer());
const dir = dirname(imagePath);
const nameWithoutExt = basename(imagePath, basename(imagePath).match(/\.[^.]+$/)?.[0] || "");
const outputPath = join(dir, `${nameWithoutExt}-nobg.png`);
writeFileSync(outputPath, buffer);
console.log("Saved:", outputPath);
EOF
Replace INPUT_IMAGE_PATH with the actual path to the image.
Model Options
The BiRefNet model supports different configurations:
Model Variants
"General Use (Light)"- Fast, good for most images (default)"General Use (Heavy)"- Higher quality, slower processing"Portrait"- Optimized for human subjects"Matting"- Best for complex edges like hair
Operating Resolutions
"1024x1024"- Standard quality (default)"2048x2048"- Higher detail for large images
Additional Options
refine_foreground: true- Improve edge qualityoutput_format: "png"- Always use PNG for transparency
Configuration Example
For high-quality portrait extraction:
bun run - << 'EOF'
import { fal } from "@fal-ai/client";
import { readFileSync, writeFileSync } from "fs";
import { basename, dirname, join } from "path";
const imagePath = "INPUT_IMAGE_PATH";
const imageBuffer = readFileSync(imagePath);
const fileName = basename(imagePath);
const mimeType = imagePath.endsWith(".png") ? "image/png" : "image/jpeg";
const file = new File([imageBuffer], fileName, { type: mimeType });
const imageUrl = await fal.storage.upload(file);
const result = await fal.subscribe("fal-ai/birefnet/v2", {
input: {
image_url: imageUrl,
model: "Portrait",
operating_resolution: "2048x2048",
refine_foreground: true,
output_format: "png"
},
logs: true,
onQueueUpdate: (update) => {
if (update.status === "IN_PROGRESS" && update.logs) {
update.logs.map((log) => log.message).forEach(console.log);
}
},
});
const response = await fetch(result.data.image.url);
const buffer = Buffer.from(await response.arrayBuffer());
const dir = dirname(imagePath);
const nameWithoutExt = basename(imagePath, basename(imagePath).match(/\.[^.]+$/)?.[0] || "");
const outputPath = join(dir, `${nameWithoutExt}-nobg.png`);
writeFileSync(outputPath, buffer);
console.log("Saved:", outputPath);
EOF
Key Principles
- Check prerequisites: Always verify Bun is installed before running
- Ask before installing: Get user permission before
npm install -g bun - Use heredocs: Run inline scripts for one-off operations
- Preserve location: Save output next to input with
-nobgsuffix - Always PNG: Output format must be PNG for transparency
Workflow
- Verify Bun is installed (offer to install if not)
- Verify FAL_KEY is set
- Run the script with the input image path
- Check the output - view the saved PNG with transparent background
Error Recovery
If a script fails:
- Check FAL_KEY is set:
echo $FAL_KEY - Verify image path exists and is readable
- Check FAL.ai dashboard for quota/billing issues
- Try a smaller image if upload fails
API Response Format
The BiRefNet model returns:
{
"image": {
"url": "https://...",
"width": 1024,
"height": 1024,
"content_type": "image/png",
"file_name": "birefnet-output.png"
}
}
Advanced Usage
For batch processing, URL-based inputs, or integration with other tools, see references/guide.md.