Claude Code Plugins

Community-maintained marketplace

Feedback

markdown-doc-writer

@yennanliu/CS_basics
129
0

Technical documentation writer specializing in creating clear, well-structured markdown documents for algorithms, system design, interview preparation, and code documentation. Use when writing README files, algorithm explanations, system design docs, or technical guides.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name markdown-doc-writer
description Technical documentation writer specializing in creating clear, well-structured markdown documents for algorithms, system design, interview preparation, and code documentation. Use when writing README files, algorithm explanations, system design docs, or technical guides.
allowed-tools Read, Glob, Grep, Edit, Write

Markdown Documentation Writer

When to use this Skill

Use this Skill when:

  • Writing README files
  • Creating algorithm explanations
  • Documenting system design solutions
  • Writing interview preparation guides
  • Creating cheat sheets and reference materials
  • Adding code documentation

Documentation Standards

1. Structure Guidelines

Every document should have:

  1. Clear title (H1)
  2. Brief description
  3. Table of contents (for long docs)
  4. Well-organized sections (H2, H3)
  5. Code examples
  6. Complexity analysis (for algorithms)
  7. References/links

Standard Template:

# Title

Brief description of what this document covers.

## Table of Contents
- [Section 1](#section-1)
- [Section 2](#section-2)

## Section 1

Content...

## Section 2

Content...

## References
- [Link 1](url)

2. Algorithm Documentation Format

Use this structure for algorithm problems:

# Problem Number: Problem Title

**Difficulty**: Easy/Medium/Hard
**Topics**: Array, Two Pointers, Hash Table
**Companies**: Google, Amazon, Meta

## Problem Statement

[Clear description of the problem]

**Example 1:**

Input: [example input] Output: [example output] Explanation: [why this is the output]


**Constraints:**
- [List constraints]

## Approach

### Intuition

[Explain the key insight in simple terms]

### Algorithm

1. [Step 1]
2. [Step 2]
3. [Step 3]

### Complexity Analysis

- **Time Complexity**: O(n) - [Explain why]
- **Space Complexity**: O(1) - [Explain why]

## Solution

### Java
```java
class Solution {
    public ReturnType method(InputType param) {
        // Implementation
    }
}

Python

class Solution:
    def method(self, param: InputType) -> ReturnType:
        # Implementation

Alternative Approaches

Approach 2: [Name]

[Description]

Complexity: O(?) time, O(?) space

Comparison

Approach Time Space Notes
Approach 1 O(n) O(1) Optimal
Approach 2 O(n²) O(1) Simpler code

Key Takeaways

  • [Learning point 1]
  • [Learning point 2]

Related Problems


### 3. System Design Documentation Format

**Follow the template structure:**

```markdown
# System Name: Brief Description

## 1. Requirements

### Functional Requirements
- Feature 1: [Description]
- Feature 2: [Description]

### Non-Functional Requirements
- **Scale**: X million DAU, Y QPS
- **Performance**: p99 latency < Z ms
- **Availability**: 99.9% uptime

## 2. Capacity Estimation

### Traffic
- Daily Active Users: 100M
- Requests per user: 10/day
- QPS: 100M * 10 / 86400 ≈ 11,574

### Storage
- Per user data: 1KB
- Total: 100M * 1KB = 100GB

### Bandwidth
- Average request size: 10KB
- Bandwidth: 11,574 QPS * 10KB ≈ 115MB/s

## 3. API Design

POST /api/resource GET /api/resource/{id} PUT /api/resource/{id} DELETE /api/resource/{id}


## 4. High-Level Architecture

[Client] → [Load Balancer] → [App Servers] ↓ [Cache] [DB]


## 5. Database Design

### Schema

```sql
CREATE TABLE users (
    id BIGSERIAL PRIMARY KEY,
    username VARCHAR(50) UNIQUE NOT NULL,
    created_at TIMESTAMP DEFAULT NOW()
);

Indexing Strategy

  • Index on username for fast lookup
  • Index on created_at for sorting

6. Detailed Component Design

Component 1: [Name]

Responsibility: [What it does]

Technology: [Specific tech choice]

Scaling: [How to scale]

7. Scalability & Reliability

Caching Strategy

  • [Cache what, where, why]

Sharding Strategy

  • [How to partition data]

Replication

  • [Master-slave setup]

8. Trade-offs & Alternatives

Decision Chosen Alternative Rationale
Database PostgreSQL MongoDB Need ACID

9. Monitoring & Alerting

  • Metrics to track: [List]
  • Alerts: [When to trigger]

10. Security Considerations

  • Authentication: [Method]
  • Authorization: [Method]
  • Data encryption: [At rest, in transit]

References

  • [External resources]

### 4. Code Formatting

**Inline code**: Use `backticks` for variable names, commands, short code

**Code blocks**: Use fenced code blocks with language

```markdown
```java
public class Example {
    // Code here
}

**Supported languages:**
- `java`, `python`, `javascript`, `sql`, `bash`
- `json`, `yaml`, `xml`, `markdown`
- `c`, `cpp`, `scala`, `go`

### 5. Visual Elements

**Tables:**
```markdown
| Column 1 | Column 2 | Column 3 |
|----------|----------|----------|
| Data 1   | Data 2   | Data 3   |

Lists:

Unordered:
- Item 1
  - Nested item
- Item 2

Ordered:
1. First step
2. Second step
3. Third step

Emphasis:

*italic* or _italic_
**bold** or __bold__
***bold italic***
`code`
~~strikethrough~~

Links:

[Link text](URL)
[Link with title](URL "Title")
[Reference link][ref]

[ref]: URL "Title"

Images:

![Alt text](image-url)
![Alt text](image-url "Title")

6. Complexity Analysis Documentation

Standard format:

## Complexity Analysis

### Time Complexity: O(n log n)
- Sorting takes O(n log n)
- Single pass takes O(n)
- Overall: O(n log n)

### Space Complexity: O(n)
- Hash map stores n elements: O(n)
- Result array: O(n)
- Overall: O(n)

### Optimization Notes
- Can reduce space to O(1) by modifying input in-place
- Trade-off: Destroys original input

Complexity cheat sheet to reference:

| Notation | Name | Example |
|----------|------|---------|
| O(1) | Constant | Array access |
| O(log n) | Logarithmic | Binary search |
| O(n) | Linear | Array scan |
| O(n log n) | Linearithmic | Merge sort |
| O(n²) | Quadratic | Nested loops |
| O(2ⁿ) | Exponential | Recursive Fibonacci |
| O(n!) | Factorial | Permutations |

7. Writing Style Guidelines

Be Clear:

  • Use simple language
  • Avoid jargon unless necessary
  • Define technical terms on first use
  • Use active voice

Be Concise:

  • Remove unnecessary words
  • Use bullet points for lists
  • Break long paragraphs
  • One idea per paragraph

Be Consistent:

  • Use same terminology throughout
  • Follow naming conventions
  • Maintain consistent formatting
  • Use templates for similar documents

Examples:

❌ Bad:

The algorithm basically works by iterating through the array and
then it checks if the element is what we're looking for.

✅ Good:

The algorithm iterates through the array to find the target element.

8. Interview Preparation Docs

Pattern template:

# Pattern Name

## When to Use
- [Characteristic 1]
- [Characteristic 2]

## Template Code

```python
def pattern_template(arr):
    # Step 1: Setup

    # Step 2: Main logic

    # Step 3: Return result

Example Problems

  1. Problem 1 - Easy
  2. Problem 2 - Medium
  3. Problem 3 - Hard

Key Points

  • [Tip 1]
  • [Tip 2]

### 9. Cheat Sheet Format

**Keep it scannable:**
```markdown
# Topic Cheat Sheet

## Quick Reference

| Operation | Syntax | Complexity |
|-----------|--------|------------|
| Access | arr[i] | O(1) |
| Search | arr.indexOf(x) | O(n) |

## Common Patterns

### Pattern 1
```code
// Code snippet

Use when: [Description]

Pattern 2

// Code snippet

Use when: [Description]

Gotchas

  • ⚠️ [Common mistake 1]
  • ⚠️ [Common mistake 2]

### 10. Document Maintenance

**Version control:**
- Use git to track changes
- Write meaningful commit messages
- Keep documents up to date with code

**Cross-references:**
- Link related documents
- Reference source code files
- Point to external resources

**Validation:**
- Check all links work
- Verify code examples compile
- Test complexity analysis accuracy

## Project-Specific Guidelines

**For CS_basics repository:**

1. **Algorithm problems**: Use detailed format with multiple languages
2. **System design**: Follow `00_template.md` structure
3. **Cheat sheets**: Keep in `doc/` directory
4. **Cross-language**: Maintain consistency across Java/Python implementations
5. **Interview prep**: Focus on pattern recognition and problem-solving approach

**File organization:**

doc/ ├── algorithm_patterns/ │ ├── two_pointers.md │ └── sliding_window.md ├── data_structure/ │ └── complexity_chart.md └── system_design/ └── case_studies/


## Quality Checklist

Before finalizing documentation:
- [ ] Clear title and description
- [ ] Proper heading hierarchy
- [ ] Code examples tested and working
- [ ] Complexity analysis included
- [ ] Consistent formatting
- [ ] No broken links
- [ ] Spell-checked
- [ ] Follows project conventions
- [ ] Related content linked

## Tools & References

**Markdown validation:**
- Check syntax with markdown linters
- Preview before committing
- Use consistent line breaks

**Useful symbols:**
- ✅ Checkmark for correct approach
- ❌ X for incorrect approach
- ⚠️ Warning for gotchas
- 💡 Bulb for tips
- 📝 Note for important points