| name | ai-native-development |
| description | Build AI-first applications with RAG pipelines, embeddings, vector databases, agentic workflows, and LLM integration. Master prompt engineering, function calling, streaming responses, and cost optimization for 2025+ AI development. Includes local LLM inference with Ollama for 93% CI cost reduction. |
| version | 1.3.0 |
| author | YG Starter Template |
| tags | ai, llm, rag, embeddings, vector-database, agents, langchain, ollama, local-inference, 2025 |
AI-Native Development
Overview
AI-Native Development focuses on building applications where AI is a first-class citizen, not an afterthought. This skill provides comprehensive patterns for integrating LLMs, implementing RAG (Retrieval-Augmented Generation), using vector databases, building agentic workflows, and optimizing AI application performance and cost.
Real-World Use Cases:
- AI-Powered Documentation Search: Semantic search over technical docs with hybrid retrieval
- Code Review Assistant: Automated code analysis with security, performance, and style checks
- Customer Support Chatbot: RAG-based Q&A with citation of knowledge base articles
- Content Analysis Pipeline: Multi-agent workflows for analyzing articles, tutorials, and documentation
- Research Assistant: Multi-query RAG with source tracking and synthesis
When to use this skill:
- Building chatbots, Q&A systems, or conversational interfaces
- Implementing semantic search or recommendation engines
- Creating AI agents that can use tools and take actions
- Integrating LLMs (OpenAI, Anthropic, Ollama local models) into applications
- Building RAG systems for knowledge retrieval
- Optimizing AI costs and latency (93% savings with local models)
- Implementing AI observability and monitoring
- Setting up local LLM inference for CI/CD pipelines
Why AI-Native Development Matters
Traditional software is deterministic; AI-native applications are probabilistic:
- Context is Everything: LLMs need relevant context to provide accurate answers
- RAG Over Fine-Tuning: Retrieval is cheaper and more flexible than fine-tuning
- Embeddings Enable Semantic Search: Move beyond keyword matching to understanding meaning
- Agentic Workflows: LLMs can reason, plan, and use tools autonomously
- Cost Management: Token usage directly impacts operational costs
- Observability: Debugging probabilistic systems requires new approaches
- Prompt Engineering: How you ask matters as much as what you ask
Core Concepts
1. Embeddings & Vector Search
Embeddings are vector representations of text that capture semantic meaning. Similar concepts have similar vectors.
Key Capabilities:
- Convert text to high-dimensional vectors (1536 or 3072 dimensions)
- Measure semantic similarity using cosine similarity
- Find relevant documents through vector search
- Batch process for efficiency
Detailed Implementation: See references/vector-databases.md for:
- OpenAI embeddings setup and batch processing
- Cosine similarity algorithms
- Chunking strategies (500-1000 tokens with 10-20% overlap)
2. Vector Databases
Store and retrieve embeddings efficiently at scale.
Popular Options:
- Pinecone: Serverless, managed service ($0.096/hour)
- Chroma: Open source, self-hosted
- Weaviate: Flexible schema, hybrid search
- Qdrant: Rust-based, high performance
Detailed Implementation: See references/vector-databases.md for:
- Complete setup guides for each database
- Upsert, query, update, delete operations
- Metadata filtering and hybrid search
- Cost comparison and best practices
3. RAG (Retrieval-Augmented Generation)
RAG combines retrieval systems with LLMs to provide accurate, grounded answers.
Core Pattern:
- Retrieve relevant documents from vector database
- Construct context from top results
- Generate answer with LLM using retrieved context
Advanced Patterns:
- RAG with citations and source tracking
- Hybrid search (semantic + keyword)
- Multi-query RAG for better recall
- HyDE (Hypothetical Document Embeddings)
- Contextual compression for relevance
Detailed Implementation: See references/rag-patterns.md for:
- Basic and advanced RAG patterns with full code
- Citation strategies
- Hybrid search with Reciprocal Rank Fusion
- Conversation memory patterns
- Error handling and validation
4. Function Calling & Tool Use
Enable LLMs to use external tools and APIs reliably.
Capabilities:
- Define tools with JSON schemas
- Execute functions based on LLM decisions
- Handle parallel tool calls
- Stream responses with tool use
Detailed Implementation: See references/function-calling.md for:
- Tool definition patterns (OpenAI and Anthropic)
- Function calling loops
- Parallel and streaming tool execution
- Input validation with Zod
- Error handling and fallback strategies
5. Agentic Workflows
Enable LLMs to reason, plan, and take autonomous actions.
Patterns:
- ReAct: Reasoning + Acting loop with observations
- Tree of Thoughts: Explore multiple reasoning paths
- Multi-Agent: Specialized agents collaborating on complex tasks
- Autonomous Agents: Self-directed goal achievement
Detailed Implementation: See references/agentic-workflows.md for:
- Complete ReAct loop implementation
- Tree of Thoughts exploration
- Multi-agent coordinator patterns
- Agent memory management
- Error recovery and safety guards
5.1 Multi-Agent Orchestration (Opus 4.5)
Advanced multi-agent patterns leveraging Opus 4.5's extended thinking capabilities.
When to Use Extended Thinking:
- Coordinating 3+ specialized agents
- Complex dependency resolution between agent outputs
- Dynamic task allocation based on agent capabilities
- Conflict resolution when agents produce contradictory results
Orchestrator Pattern:
interface AgentTask {
id: string;
type: 'research' | 'code' | 'review' | 'design';
input: unknown;
dependencies: string[]; // Task IDs that must complete first
}
interface AgentResult {
taskId: string;
output: unknown;
confidence: number;
reasoning: string;
}
async function orchestrateAgents(
goal: string,
availableAgents: Agent[]
): Promise<AgentResult[]> {
// Step 1: Use extended thinking to decompose goal into tasks
const taskPlan = await planTasks(goal, availableAgents);
// Step 2: Build dependency graph
const dependencyGraph = buildDependencyGraph(taskPlan.tasks);
// Step 3: Execute tasks respecting dependencies
const results: AgentResult[] = [];
const completed = new Set<string>();
while (completed.size < taskPlan.tasks.length) {
// Find tasks with satisfied dependencies
const ready = taskPlan.tasks.filter(task =>
!completed.has(task.id) &&
task.dependencies.every(dep => completed.has(dep))
);
// Execute ready tasks in parallel
const batchResults = await Promise.all(
ready.map(task => executeAgentTask(task, availableAgents))
);
// Validate results - use extended thinking for conflicts
const validatedResults = await validateAndResolveConflicts(
batchResults,
results
);
results.push(...validatedResults);
ready.forEach(task => completed.add(task.id));
}
return results;
}
Task Planning with Extended Thinking:
Based on Anthropic's Extended Thinking documentation:
import Anthropic from '@anthropic-ai/sdk';
const anthropic = new Anthropic();
async function planTasks(
goal: string,
agents: Agent[]
): Promise<{ tasks: AgentTask[]; rationale: string }> {
// Extended thinking requires budget_tokens < max_tokens
// Minimum budget: 1,024 tokens
const response = await anthropic.messages.create({
model: 'claude-opus-4-5-20251101', // Or claude-sonnet-4-5-20250929
max_tokens: 16000,
thinking: {
type: 'enabled',
budget_tokens: 10000 // Extended thinking for complex planning
},
messages: [{
role: 'user',
content: `
Goal: ${goal}
Available agents and their capabilities:
${agents.map(a => `- ${a.name}: ${a.capabilities.join(', ')}`).join('\n')}
Decompose this goal into tasks. For each task, specify:
1. Which agent should handle it
2. What input it needs
3. Which other tasks it depends on
4. Expected output format
Think carefully about:
- Optimal parallelization opportunities
- Potential conflicts between agent outputs
- Information that needs to flow between tasks
`
}]
});
// Response contains thinking blocks followed by text blocks
// content: [{ type: 'thinking', thinking: '...' }, { type: 'text', text: '...' }]
return parseTaskPlan(response);
}
Conflict Resolution:
async function validateAndResolveConflicts(
newResults: AgentResult[],
existingResults: AgentResult[]
): Promise<AgentResult[]> {
// Check for conflicts with existing results
const conflicts = detectConflicts(newResults, existingResults);
if (conflicts.length === 0) {
return newResults;
}
// Use extended thinking to resolve conflicts
const resolution = await anthropic.messages.create({
model: 'claude-opus-4-5-20251101',
max_tokens: 8000,
thinking: {
type: 'enabled',
budget_tokens: 5000
},
messages: [{
role: 'user',
content: `
The following agent outputs conflict:
${conflicts.map(c => `
Conflict: ${c.description}
Agent A (${c.agentA.name}): ${JSON.stringify(c.resultA)}
Agent B (${c.agentB.name}): ${JSON.stringify(c.resultB)}
`).join('\n\n')}
Analyze each conflict and determine:
1. Which output is more likely correct and why
2. If both have merit, how to synthesize them
3. What additional verification might be needed
`
}]
});
return applyResolutions(newResults, resolution);
}
Adaptive Agent Selection:
async function selectOptimalAgent(
task: AgentTask,
agents: Agent[],
context: ExecutionContext
): Promise<Agent> {
// Score each agent based on:
// - Capability match
// - Current load
// - Historical performance on similar tasks
// - Cost (model tier)
const scores = agents.map(agent => ({
agent,
score: calculateAgentScore(agent, task, context)
}));
// For complex tasks, use Opus; for simple tasks, use Haiku
const complexity = assessTaskComplexity(task);
if (complexity > 0.7) {
// Filter to agents that can use Opus
const opusCapable = scores.filter(s => s.agent.supportsOpus);
return opusCapable.sort((a, b) => b.score - a.score)[0].agent;
}
return scores.sort((a, b) => b.score - a.score)[0].agent;
}
Agent Communication Protocol:
interface AgentMessage {
from: string;
to: string | 'broadcast';
type: 'request' | 'response' | 'update' | 'conflict';
payload: unknown;
timestamp: Date;
}
class AgentCommunicationBus {
private messages: AgentMessage[] = [];
private subscribers: Map<string, (msg: AgentMessage) => void> = new Map();
send(message: AgentMessage): void {
this.messages.push(message);
if (message.to === 'broadcast') {
this.subscribers.forEach(callback => callback(message));
} else {
this.subscribers.get(message.to)?.(message);
}
}
subscribe(agentId: string, callback: (msg: AgentMessage) => void): void {
this.subscribers.set(agentId, callback);
}
getHistory(agentId: string): AgentMessage[] {
return this.messages.filter(
m => m.from === agentId || m.to === agentId || m.to === 'broadcast'
);
}
}
6. Multi-Agent Synthesis & Aggregation
When multiple specialized agents analyze content, synthesize their findings into coherent output.
Real-World Example: Code Review Multi-Agent System
async def multi_agent_code_review(code: str, language: str) -> ReviewReport:
"""Multi-agent code analysis with synthesis."""
# Fan-out: Run specialized review agents in parallel
agents = [
SecurityReviewAgent(), # OWASP Top 10, injection risks
PerformanceAnalyzer(), # Big-O complexity, database queries
StyleEnforcer(), # PEP8, ESLint standards
TestCoverageChecker(), # Missing test cases
DocumentationReviewer(), # Docstrings, comments
DependencyAuditor() # Outdated libs, CVEs
]
findings = await asyncio.gather(
*[agent.analyze(code, language) for agent in agents],
return_exceptions=True # Don't fail all if one fails
)
# Filter successful results with confidence scores
valid_findings = [
f for f in findings
if not isinstance(f, Exception) and f.confidence > 0.6
]
# Fan-in: Synthesize into coherent review report
return await synthesize_review_report(valid_findings)
Real-World Example: E-commerce Product Categorization
async def categorize_product(product_data: dict) -> ProductCategories:
"""Multi-agent product classification."""
agents = [
ImageClassifierAgent(), # Visual category from image
TextAnalysisAgent(), # Category from title/description
AttributeExtractor(), # Structured attributes (color, size)
SimilarProductFinder(), # Category from similar products
]
classifications = await asyncio.gather(
*[agent.predict(product_data) for agent in agents]
)
# Resolve conflicts with weighted voting
return await weighted_category_vote(classifications)
Confidence Score Handling:
def resolve_conflicts(findings: list[AgentFinding]) -> dict:
"""When agents disagree, prioritize by confidence."""
conflicts = detect_contradictions(findings)
for conflict in conflicts:
# Higher confidence wins
winner = max(conflict.agents, key=lambda a: a.confidence)
record_resolution(
conflict=conflict.description,
resolution=winner.recommendation,
priority_agent=winner.agent_type,
reasoning=f"Confidence {winner.confidence:.2f} > others"
)
7. Streaming Responses
Deliver real-time AI responses for better UX.
Capabilities:
- Stream LLM output token-by-token
- Server-Sent Events (SSE) for web clients
- Streaming with function calls
- Backpressure handling
Detailed Implementation: See ../streaming-api-patterns/SKILL.md for streaming patterns
8. LLM-as-Judge Evaluation (v1.1.0)
Use LLMs to evaluate LLM outputs for quality assurance.
Quality Aspects:
QUALITY_DIMENSIONS = {
"relevance": "How relevant is the output to the input?",
"depth": "How thorough and detailed is the analysis?",
"coherence": "How well-structured and clear is the content?",
"accuracy": "Are facts and code snippets correct?",
"completeness": "Are all required sections present?"
}
Evaluator Pattern:
from langchain_community.evaluation import load_evaluator
def create_quality_evaluator(aspect: str):
"""Create LLM-as-judge evaluator for a quality aspect."""
return load_evaluator(
evaluator=LabeledScoreStringEvalChain,
criteria={aspect: QUALITY_DIMENSIONS[aspect]},
llm=ChatOpenAI(model="gpt-4o-mini"), # Cost-effective judge
normalize_by=10 # Output 0.0-1.0 scores
)
async def evaluate_output_quality(
input_content: str,
output_content: str
) -> dict[str, float]:
"""Evaluate output across all quality dimensions."""
scores = {}
for aspect in QUALITY_DIMENSIONS:
evaluator = create_quality_evaluator(aspect)
result = await evaluator.aevaluate_strings(
input=input_content,
prediction=output_content
)
scores[aspect] = result["score"]
return scores
Quality Gate Integration:
QUALITY_THRESHOLD = 0.7 # Minimum acceptable score
async def quality_gate(state: dict) -> dict:
"""Block low-quality outputs with retry capability."""
scores = await evaluate_output_quality(
state["input"], state["output"]
)
avg_score = sum(scores.values()) / len(scores)
return {
"quality_scores": scores,
"quality_passed": avg_score >= QUALITY_THRESHOLD
}
9. Cost Optimization
Strategies:
- Use local models for CI/dev: Ollama with DeepSeek R1 70B, Qwen 2.5 Coder 32B (93% savings)
- Use smaller models for simple tasks (GPT-3.5 vs GPT-4, Haiku vs Sonnet)
- Implement prompt caching (Anthropic's ephemeral cache, Claude native cache)
- Batch requests when possible
- Set max_tokens to prevent runaway generation
- Monitor usage with alerts
- Use provider factory for automatic cloud/local switching
Token Counting:
import { encoding_for_model } from 'tiktoken'
function countTokens(text: string, model = 'gpt-4'): number {
const encoder = encoding_for_model(model)
const tokens = encoder.encode(text)
encoder.free()
return tokens.length
}
Detailed Implementation: See references/observability.md for:
- Cost estimation and budget tracking
- Model selection strategies
- Prompt caching patterns
10. Local LLM Inference with Ollama (v1.2.0)
Run LLMs locally for cost reduction, privacy, and offline development.
When to Use Local Models:
- CI/CD pipelines (93% cost reduction)
- Development and testing (no API costs)
- Privacy-sensitive data (no data leaves your machine)
- Offline development environments
- High-volume batch processing
Recommended Models (Apple Silicon M4 Max 256GB):
| Task | Model | Size | Notes |
|---|---|---|---|
| Reasoning | deepseek-r1:70b |
~42GB | GPT-4 level reasoning |
| Coding | qwen2.5-coder:32b |
~35GB | 73.7% Aider benchmark |
| Embeddings | nomic-embed-text |
~0.5GB | 768 dims, fast |
LangChain Ollama Provider (v1.0.1):
from langchain_ollama import ChatOllama, OllamaEmbeddings
# Chat completion with keep_alive for CI performance
llm = ChatOllama(
model="deepseek-r1:70b",
base_url="http://localhost:11434",
temperature=0.0,
num_ctx=32768, # Context window (Apple Silicon can handle large)
keep_alive="5m", # CRITICAL: Keep model loaded between calls
)
# Embeddings
embeddings = OllamaEmbeddings(
model="nomic-embed-text",
base_url="http://localhost:11434",
)
# Generate embedding
vector = await embeddings.aembed_query("Hello world") # Single text
vectors = await embeddings.aembed_documents(["text1", "text2"]) # Batch
Tool Calling with Ollama:
from langchain_core.tools import tool
from pydantic import BaseModel, Field
@tool
def search_documents(query: str) -> str:
"""Search the document database."""
return f"Found 5 documents for: {query}"
# Bind tools to model
llm_with_tools = llm.bind_tools([search_documents])
# Or with structured output
class CodeAnalysis(BaseModel):
language: str = Field(description="Programming language")
complexity: int = Field(ge=1, le=10, description="Complexity score")
issues: list[str] = Field(description="Identified issues")
structured_llm = llm.with_structured_output(CodeAnalysis)
result = await structured_llm.ainvoke("Analyze this Python code...")
Streaming Responses:
async def stream_response(prompt: str):
"""Stream tokens as they're generated."""
async for chunk in llm.astream(prompt):
if hasattr(chunk, "content"):
yield chunk.content
Provider Factory Pattern:
from app.shared.services.llm import get_llm_provider, get_embedding_provider
# Automatically uses Ollama if OLLAMA_ENABLED=true, else cloud API
llm = get_llm_provider(task_type="reasoning") # deepseek-r1:70b or Gemini
llm = get_llm_provider(task_type="coding") # qwen2.5-coder:32b or Claude
embedder = get_embedding_provider() # nomic-embed-text or OpenAI
# Check availability
from app.shared.services.llm import is_ollama_available, get_available_ollama_models
if is_ollama_available():
models = get_available_ollama_models()
Environment Configuration:
# Enable Ollama for local inference
export OLLAMA_ENABLED=true
export OLLAMA_HOST=http://localhost:11434
export OLLAMA_MODEL_REASONING=deepseek-r1:70b
export OLLAMA_MODEL_CODING=qwen2.5-coder:32b
export OLLAMA_MODEL_EMBED=nomic-embed-text
# Performance tuning for M4 Max
export OLLAMA_MAX_LOADED_MODELS=3 # Keep 3 models in memory
export OLLAMA_KEEP_ALIVE=5m # 5 minute keep-alive
CI Integration (GitHub Actions):
# .github/workflows/evaluation.yml
jobs:
evaluate:
runs-on: self-hosted # M4 Max 256GB runner
env:
OLLAMA_ENABLED: "true"
OLLAMA_HOST: "http://localhost:11434"
OLLAMA_MODEL_REASONING: "deepseek-r1:70b"
OLLAMA_MODEL_CODING: "qwen2.5-coder:32b"
OLLAMA_MODEL_EMBED: "nomic-embed-text"
steps:
- name: Ensure Ollama models ready
run: |
# Pre-warm embedding model for faster first call
curl -s http://localhost:11434/api/embeddings \
-d '{"model":"nomic-embed-text","prompt":"warmup"}' > /dev/null
Cost Comparison:
| Provider | Monthly Cost | Latency | Privacy |
|---|---|---|---|
| Cloud APIs | ~₪675/month | 200-500ms | ❌ |
| Ollama Local | ~₪50/month (electricity) | 50-200ms | ✅ |
| Savings | 93% | 2-3x faster | Full control |
Best Practices:
- ✅ Use
keep_alive="5m"in CI to avoid cold starts - ✅ Pre-warm models before first call in CI
- ✅ Set
num_ctx=32768on Apple Silicon (plenty of memory) - ✅ Use factory pattern for cloud/local switching
- ✅ Run 3 models simultaneously on M4 Max 256GB
- ❌ Don't use
keep_alive=-1(keeps model forever, wastes memory) - ❌ Don't skip pre-warming in CI (cold start adds 30-60s)
Production Implementation:
# app/services/llm_provider.py - Production-ready LLM factory
from app.config import settings
def get_llm_provider(task_type: str = "reasoning"):
"""Get LLM provider based on environment configuration."""
if settings.OLLAMA_ENABLED:
return get_ollama_provider(task_type)
return get_cloud_provider(task_type)
def get_ollama_provider(task_type: str):
"""Configure Ollama for local inference."""
from langchain_ollama import ChatOllama
model_map = {
"reasoning": "deepseek-r1:70b",
"coding": "qwen2.5-coder:32b",
"general": "llama3.3:70b"
}
return ChatOllama(
model=model_map.get(task_type, "deepseek-r1:70b"),
base_url=settings.OLLAMA_HOST,
temperature=0.0,
num_ctx=32768,
keep_alive="5m"
)
def get_cloud_provider(task_type: str):
"""Configure cloud LLM provider."""
from langchain.chat_models import init_chat_model
model_map = {
"reasoning": "claude-opus-4-20250514",
"coding": "claude-sonnet-4-20250514",
"general": "gemini-2.0-flash-001"
}
return init_chat_model(
model_map.get(task_type, "claude-sonnet-4-20250514"),
temperature=0.0
)
8. Observability & Monitoring
Track LLM performance, costs, and quality in production.
Tools:
- Langfuse: Open-source LLM observability, tracing, evaluation, monitoring
- Custom Logging: Structured logs with metrics
Key Metrics:
- Throughput (requests/minute)
- Latency (P50, P95, P99)
- Token usage and cost
- Error rate
- Quality scores (relevance, coherence, factuality)
Detailed Implementation: See references/observability.md for:
- Langfuse integration (self-hosted LLM observability)
- Custom logger implementation
- Performance monitoring
- Quality evaluation
- Debugging and error analysis
Searching References
This skill includes detailed reference material. Use grep to find specific patterns:
# Find RAG patterns
grep -r "RAG" references/
# Search for specific vector database
grep -A 10 "Pinecone Setup" references/vector-databases.md
# Find agentic workflow examples
grep -B 5 "ReAct Pattern" references/agentic-workflows.md
# Locate function calling patterns
grep -n "parallel.*tool" references/function-calling.md
# Search for cost optimization
grep -i "cost\|pricing\|budget" references/observability.md
# Find all code examples for embeddings
grep -A 20 "async function.*embedding" references/
Best Practices
Context Management
- ✅ Keep context windows under 75% of model limit
- ✅ Use sliding window for long conversations
- ✅ Summarize old messages before they scroll out
- ✅ Remove redundant or irrelevant context
Embedding Strategy
- ✅ Chunk documents to 500-1000 tokens
- ✅ Overlap chunks by 10-20% for continuity
- ✅ Include metadata (title, source, date) with chunks
- ✅ Re-embed when source data changes
RAG Quality
- ✅ Use hybrid search (semantic + keyword)
- ✅ Re-rank results for relevance
- ✅ Include citation/source in context
- ✅ Set temperature low (0.1-0.3) for factual answers
- ✅ Validate answers against retrieved context
Function Calling
- ✅ Provide clear, concise function descriptions
- ✅ Use strict JSON schema for parameters
- ✅ Handle missing or invalid parameters gracefully
- ✅ Limit to 10-20 tools to avoid confusion
- ✅ Validate function outputs before returning to LLM
Cost Optimization
- ✅ Use smaller models for simple tasks
- ✅ Implement prompt caching for repeated content
- ✅ Batch requests when possible
- ✅ Set max_tokens to prevent runaway generation
- ✅ Monitor usage with alerts for anomalies
Security
- ✅ Validate and sanitize user inputs
- ✅ Never include secrets in prompts
- ✅ Implement rate limiting
- ✅ Filter outputs for harmful content
- ✅ Use separate API keys per environment
Templates
Use the provided templates for common AI patterns:
templates/rag-pipeline.ts- Basic RAG implementationtemplates/agentic-workflow.ts- ReAct agent pattern
Examples
Complete RAG Chatbot
See examples/chatbot-with-rag/ for a full-stack implementation:
- Vector database setup with document ingestion
- RAG query with citations
- Streaming chat interface
- Cost tracking and monitoring
Checklists
AI Implementation Checklist
See checklists/ai-implementation.md for comprehensive validation covering:
- Vector database setup and configuration
- Embedding generation and chunking strategy
- RAG pipeline with quality validation
- Function calling with error handling
- Streaming response implementation
- Cost monitoring and budget alerts
- Observability and logging
- Security and input validation
Common Patterns
Semantic Caching
Reduce costs by caching similar queries:
const cache = new Map<string, { embedding: number[]; response: string }>()
async function cachedRAG(query: string) {
const queryEmbedding = await createEmbedding(query)
// Check if similar query exists in cache
for (const [cachedQuery, cached] of cache.entries()) {
const similarity = cosineSimilarity(queryEmbedding, cached.embedding)
if (similarity > 0.95) {
return cached.response
}
}
// Not cached, perform RAG
const response = await ragQuery(query)
cache.set(query, { embedding: queryEmbedding, response })
return response
}
Conversational Memory
Maintain context across multiple turns:
interface ConversationMemory {
messages: Message[] // Last 10 messages
summary?: string // Summary of older messages
}
async function getConversationContext(userId: string): Promise<Message[]> {
const memory = await db.memory.findUnique({ where: { userId } })
return [
{ role: 'system', content: `Previous conversation summary: ${memory.summary}` },
...memory.messages.slice(-5) // Last 5 messages
]
}
Prompt Engineering
Few-Shot Learning
Provide examples to guide LLM behavior:
const fewShotExamples = `
Example 1:
Input: "I love this product!"
Sentiment: Positive
Example 2:
Input: "It's okay, nothing special"
Sentiment: Neutral
`
// Include in system prompt
Chain of Thought (CoT)
Ask LLM to show reasoning:
const prompt = `${problem}\n\nLet's think step by step:`
Resources
- OpenAI API Documentation
- Anthropic Claude API
- LangChain Documentation
- LangChain-Ollama - ChatOllama, OllamaEmbeddings
- Ollama Documentation - Local LLM inference
- Ollama Model Library - Available models
- Pinecone Documentation
- Chroma Documentation
- Langfuse Observability
Next Steps
After mastering AI-Native Development:
- Explore Streaming API Patterns skill for real-time AI responses
- Use Type Safety & Validation skill for AI input/output validation
- Apply Edge Computing Patterns skill for global AI deployment
- Reference Observability Patterns for production monitoring