| name | defense-in-depth |
| description | Use when building secure AI pipelines or hardening LLM integrations. Implements 8 validation layers from edge to storage with no single point of failure. |
| context | fork |
| agent | security-layer-auditor |
| version | 1.0.0 |
| allowed-tools | Read, Grep, Glob |
| hooks | [object Object] |
Defense in Depth for AI Systems
Overview
Defense in depth applies multiple security layers so that if one fails, others still protect the system. For AI applications, this means validating at every boundary: edge, gateway, input, authorization, data, LLM, output, and observability.
Core Principle: No single security control should be the only thing protecting sensitive operations.
The 8-Layer Security Architecture
┌─────────────────────────────────────────────────────────────────────────┐
│ Layer 0: EDGE │ WAF, Rate Limiting, DDoS, Bot Detection │
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 1: GATEWAY │ JWT Verify, Extract Claims, Build Context │
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 2: INPUT │ Schema Validation, PII Detection, Injection│
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 3: AUTHORIZATION │ RBAC/ABAC, Tenant Check, Resource Access │
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 4: DATA ACCESS │ Parameterized Queries, Tenant Filter │
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 5: LLM │ Prompt Building (no IDs), Context Separation│
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 6: OUTPUT │ Schema Validation, Guardrails, Hallucination│
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 7: STORAGE │ Attribution, Audit Trail, Encryption │
├─────────────────────────────────────────────────────────────────────────┤
│ Layer 8: OBSERVABILITY │ Logging (sanitized), Tracing, Metrics │
└─────────────────────────────────────────────────────────────────────────┘
Layer Details
Layer 0: Edge Protection
Purpose: Stop attacks before they reach your application.
- WAF rules for OWASP Top 10
- Rate limiting per user/IP
- DDoS protection
- Bot detection
- Geo-blocking if required
Layer 1: Gateway / Authentication
Purpose: Verify identity and build request context.
@dataclass(frozen=True)
class RequestContext:
"""Immutable context that flows through the system"""
# Identity
user_id: UUID
tenant_id: UUID
session_id: str
permissions: frozenset[str]
# Tracing
request_id: str
trace_id: str
# Metadata
timestamp: datetime
client_ip: str
Layer 2: Input Validation
Purpose: Reject bad input early.
- Schema validation: Pydantic/Zod for structure
- Content validation: PII detection, malware scan
- Injection defense: SQL, XSS, prompt injection patterns
Layer 3: Authorization
Purpose: Verify permission for the specific action and resource.
async def authorize(ctx: RequestContext, action: str, resource: Resource) -> bool:
# 1. Check permission exists
if action not in ctx.permissions:
raise Forbidden("Missing permission")
# 2. Check tenant ownership
if resource.tenant_id != ctx.tenant_id:
raise Forbidden("Cross-tenant access denied")
# 3. Check resource-level access
if not await check_resource_access(ctx.user_id, resource):
raise Forbidden("No access to resource")
return True
Layer 4: Data Access
Purpose: Ensure all queries are tenant-scoped.
class TenantScopedRepository:
def __init__(self, ctx: RequestContext):
self.ctx = ctx
self._base_filter = {"tenant_id": ctx.tenant_id}
async def find(self, query: dict) -> list[Model]:
# ALWAYS merge tenant filter
safe_query = {**self._base_filter, **query}
return await self.db.find(safe_query)
Layer 5: LLM Orchestration
Purpose: Build prompts with content only, no identifiers.
- Identifiers flow AROUND the LLM, not THROUGH it
- Prompts contain only content text
- No user_id, tenant_id, document_id in prompt text
- See
llm-safety-patternsskill for details
Layer 6: Output Validation
Purpose: Validate LLM output before use.
- Schema validation (JSON structure)
- Content guardrails (toxicity, PII generation)
- Hallucination detection (grounding check)
- Code injection prevention
Layer 7: Attribution & Storage
Purpose: Reattach context and store with proper attribution.
- Attribution is deterministic, not LLM-generated
- Context from Layer 1 is attached to results
- Source references from Layer 4 are attached
- Audit trail recorded
Layer 8: Observability
Purpose: Monitor without leaking sensitive data.
- Structured logging with sanitization
- Distributed tracing (Langfuse)
- Metrics (latency, errors, costs)
- Alerts for anomalies
Implementation Checklist
Before deploying any AI feature, verify:
- Layer 0: Rate limiting configured
- Layer 1: JWT validation active, RequestContext created
- Layer 2: Pydantic models validate all input
- Layer 3: Authorization check on every endpoint
- Layer 4: All queries include tenant_id filter
- Layer 5: No IDs in LLM prompts (run audit)
- Layer 6: Output schema validation active
- Layer 7: Attribution uses context, not LLM output
- Layer 8: Logging sanitized, tracing enabled
Industry Sources
| Pattern | Source | Application |
|---|---|---|
| Defense in Depth | NIST | Multiple validation layers |
| Zero Trust | Google BeyondCorp | Every request verified |
| Least Privilege | AWS IAM | Minimal permissions |
| Complete Mediation | Saltzer & Schroeder | Every access checked |
Integration with SkillForge
This skill integrates with:
llm-safety-patterns- Layer 5 detailssecurity-checklist- OWASP validationsobservability-monitoring- Layer 8 details
Version: 1.0.0 (December 2025)
Capability Details
8-layer-architecture
Keywords: defense in depth, security layers, validation layers, multi-layer Solves:
- How do I secure my AI application end-to-end?
- What validation layers do I need?
- How do I implement defense in depth?
request-context
Keywords: request context, immutable context, context object, user context Solves:
- How do I pass user identity through the system?
- How do I create an immutable request context?
- What should be in the request context?
tenant-isolation
Keywords: multi-tenant, tenant isolation, tenant filter, cross-tenant Solves:
- How do I ensure tenant isolation?
- How do I prevent cross-tenant data access?
- How do I filter queries by tenant?
audit-logging
Keywords: audit log, audit trail, logging, compliance Solves:
- What should I log for compliance?
- How do I create audit trails?
- How do I log without leaking PII?