| name | function-calling |
| description | LLM function calling and tool use patterns. Use when enabling LLMs to call external tools, defining tool schemas, implementing tool execution loops, or getting structured output from LLMs. |
Function Calling
Enable LLMs to use external tools and return structured data.
When to Use
- LLM needs to call APIs or databases
- Extracting structured data from text
- Building AI agents with tool use
- Reliable JSON output from LLMs
Basic Tool Definition (2026 Best Practice)
# OpenAI format with strict mode (2026 recommended)
tools = [{
"type": "function",
"function": {
"name": "search_documents",
"description": "Search the document database for relevant content",
"strict": True, # ← 2026: Enables structured output validation
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query"
},
"limit": {
"type": "integer",
"description": "Max results to return"
}
},
"required": ["query", "limit"], # All props required when strict
"additionalProperties": False # ← 2026: Required for strict mode
}
}
}]
# Note: With strict=True:
# - All properties must be listed in "required"
# - additionalProperties must be False
# - No "default" values (provide via code instead)
Tool Execution Loop
async def run_with_tools(messages: list, tools: list) -> str:
"""Execute tool calls until LLM returns final answer."""
while True:
response = await llm.chat(messages=messages, tools=tools)
# Check if LLM wants to call tools
if not response.tool_calls:
return response.content
# Execute each tool call
for tool_call in response.tool_calls:
result = await execute_tool(
tool_call.function.name,
json.loads(tool_call.function.arguments)
)
# Add tool result to conversation
messages.append({
"role": "tool",
"tool_call_id": tool_call.id,
"content": json.dumps(result)
})
# Continue loop (LLM will process tool results)
async def execute_tool(name: str, args: dict) -> any:
"""Route to appropriate tool implementation."""
tools = {
"search_documents": search_documents,
"get_weather": get_weather,
"calculate": calculate,
}
return await tools[name](**args)
Structured Output (Guaranteed JSON)
from pydantic import BaseModel
class Analysis(BaseModel):
sentiment: str
confidence: float
key_points: list[str]
# OpenAI structured output
response = await client.beta.chat.completions.parse(
model="gpt-4o",
messages=[{"role": "user", "content": "Analyze this text..."}],
response_format=Analysis
)
analysis = response.choices[0].message.parsed # Typed Analysis object
LangChain Tool Binding
from langchain_core.tools import tool
from pydantic import BaseModel, Field
@tool
def search_documents(query: str, limit: int = 5) -> list[dict]:
"""Search the document database.
Args:
query: Search query string
limit: Maximum results to return
"""
return db.search(query, limit=limit)
# Bind to model
llm_with_tools = llm.bind_tools([search_documents])
# Or with structured output
class SearchResult(BaseModel):
query: str = Field(description="The search query used")
results: list[str] = Field(description="Matching documents")
structured_llm = llm.with_structured_output(SearchResult)
Parallel Tool Calls
# OpenAI supports parallel tool calls
response = await llm.chat(
messages=messages,
tools=tools,
parallel_tool_calls=True # Default in GPT-4o
)
# Handle multiple calls in parallel
if response.tool_calls:
results = await asyncio.gather(*[
execute_tool(tc.function.name, json.loads(tc.function.arguments))
for tc in response.tool_calls
])
⚠️ 2026 Compatibility Note:
# Structured outputs with strict=True may not work with parallel_tool_calls
# If using strict mode schemas, disable parallel calls:
response = await llm.chat(
messages=messages,
tools=tools_with_strict_true,
parallel_tool_calls=False # Required for strict mode reliability
)
Key Decisions
| Decision | Recommendation |
|---|---|
| Tool count | 5-15 max (more = confusion) |
| Description length | 1-2 sentences |
| Parameter validation | Use Pydantic/Zod |
| Error handling | Return error as tool result |
| Schema mode | strict: true (2026 best practice) |
| Output format | Structured Outputs > JSON mode |
| Parallel calls | Disable with strict mode |
Common Mistakes
- Vague tool descriptions (LLM won't know when to use)
- No input validation (LLM sends bad params)
- Missing error handling (crashes on tool failure)
- Too many tools (LLM gets confused)
Related Skills
agent-loops- Multi-step tool use with reasoningllm-streaming- Streaming with tool callsstructured-output- Complex output schemas