LangGraph Parallel Execution
Run independent nodes concurrently for performance.
When to Use
- Independent agents can run together
- Map-reduce over task lists
- Scatter-gather patterns
- Performance optimization
Fan-Out/Fan-In Pattern
from langgraph.graph import StateGraph
def fan_out(state):
"""Split work into parallel tasks."""
state["tasks"] = [{"id": 1}, {"id": 2}, {"id": 3}]
return state
def worker(state):
"""Process one task."""
task = state["current_task"]
result = process(task)
return {"results": [result]}
def fan_in(state):
"""Combine parallel results."""
combined = aggregate(state["results"])
return {"final": combined}
workflow = StateGraph(State)
workflow.add_node("fan_out", fan_out)
workflow.add_node("worker", worker)
workflow.add_node("fan_in", fan_in)
workflow.add_edge("fan_out", "worker")
workflow.add_edge("worker", "fan_in") # Waits for all workers
Using Send API
from langgraph.constants import Send
def router(state):
"""Route to multiple workers in parallel."""
return [
Send("worker", {"task": task})
for task in state["tasks"]
]
workflow.add_conditional_edges("router", router)
Parallel Agent Analysis
from typing import Annotated
from operator import add
class AnalysisState(TypedDict):
content: str
findings: Annotated[list[dict], add] # Accumulates
async def run_parallel_agents(state: AnalysisState):
"""Run multiple agents in parallel."""
agents = [security_agent, tech_agent, quality_agent]
# Run all concurrently
tasks = [agent.analyze(state["content"]) for agent in agents]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Filter successful results
findings = [r for r in results if not isinstance(r, Exception)]
return {"findings": findings}
Map-Reduce Pattern
def map_node(state):
"""Map: Process each item independently."""
items = state["items"]
results = []
for item in items:
result = process_item(item)
results.append(result)
return {"mapped_results": results}
def reduce_node(state):
"""Reduce: Combine all results."""
results = state["mapped_results"]
summary = {
"total": len(results),
"passed": sum(1 for r in results if r["passed"]),
"failed": sum(1 for r in results if not r["passed"])
}
return {"summary": summary}
Error Isolation
async def parallel_with_isolation(tasks: list):
"""Run parallel tasks, isolate failures."""
results = await asyncio.gather(*tasks, return_exceptions=True)
successes = []
failures = []
for task, result in zip(tasks, results):
if isinstance(result, Exception):
failures.append({"task": task, "error": str(result)})
else:
successes.append(result)
return {"successes": successes, "failures": failures}
Timeout per Branch
import asyncio
async def parallel_with_timeout(agents: list, content: str, timeout: int = 30):
"""Run agents with per-agent timeout."""
async def run_with_timeout(agent):
try:
return await asyncio.wait_for(
agent.analyze(content),
timeout=timeout
)
except asyncio.TimeoutError:
return {"agent": agent.name, "error": "timeout"}
tasks = [run_with_timeout(a) for a in agents]
return await asyncio.gather(*tasks)
Key Decisions
| Decision |
Recommendation |
| Max parallel |
5-10 concurrent (avoid overwhelming APIs) |
| Error handling |
return_exceptions=True (don't fail all) |
| Timeout |
30-60s per branch |
| Accumulator |
Use Annotated[list, add] for results |
Common Mistakes
- No error isolation (one failure kills all)
- No timeout (one slow branch blocks)
- Sequential where parallel possible
- Forgetting to wait for all branches
Related Skills
langgraph-state - Accumulating state
multi-agent-orchestration - Coordination patterns
langgraph-supervisor - Supervised parallel execution