Claude Code Plugins

Community-maintained marketplace

Feedback

Building MCP (Model Context Protocol) servers for Claude extensibility. Use when creating custom tools, integrating external services, or extending Claude's capabilities.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mcp-server-building
description Building MCP (Model Context Protocol) servers for Claude extensibility. Use when creating custom tools, integrating external services, or extending Claude's capabilities.
context fork
agent backend-system-architect

MCP Server Building

Build custom MCP servers to extend Claude with tools, resources, and prompts.

When to Use

  • Extending Claude with custom tools and capabilities
  • Integrating external APIs and services with Claude
  • Building domain-specific Claude extensions
  • Creating reusable tool packages for Claude Desktop

Core Concepts

MCP Architecture

┌─────────────┐     JSON-RPC      ┌─────────────┐
│   Claude    │◄──────────────────►│ MCP Server  │
│   (Host)    │   stdio/SSE/WS    │  (Tools)    │
└─────────────┘                    └─────────────┘

Three Primitives:

  • Tools: Functions Claude can call (with user approval)
  • Resources: Data Claude can read (files, API responses)
  • Prompts: Pre-defined prompt templates

Quick Start

Minimal Python Server (stdio)

# server.py
from mcp.server import Server
from mcp.server.stdio import stdio_server
from mcp.types import Tool, TextContent

server = Server("my-tools")

@server.list_tools()
async def list_tools() -> list[Tool]:
    return [
        Tool(
            name="greet",
            description="Greet a user by name",
            inputSchema={
                "type": "object",
                "properties": {
                    "name": {"type": "string", "description": "Name to greet"}
                },
                "required": ["name"]
            }
        )
    ]

@server.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
    if name == "greet":
        return [TextContent(type="text", text=f"Hello, {arguments['name']}!")]
    raise ValueError(f"Unknown tool: {name}")

async def main():
    async with stdio_server() as (read, write):
        await server.run(read, write, server.create_initialization_options())

if __name__ == "__main__":
    import asyncio
    asyncio.run(main())

TypeScript Server (recommended for production)

// src/index.ts
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import {
  CallToolRequestSchema,
  ListToolsRequestSchema,
} from "@modelcontextprotocol/sdk/types.js";

const server = new Server(
  { name: "my-tools", version: "1.0.0" },
  { capabilities: { tools: {} } }
);

server.setRequestHandler(ListToolsRequestSchema, async () => ({
  tools: [
    {
      name: "fetch_url",
      description: "Fetch content from a URL",
      inputSchema: {
        type: "object",
        properties: {
          url: { type: "string", description: "URL to fetch" },
        },
        required: ["url"],
      },
    },
  ],
}));

server.setRequestHandler(CallToolRequestSchema, async (request) => {
  if (request.params.name === "fetch_url") {
    const { url } = request.params.arguments as { url: string };
    const response = await fetch(url);
    const text = await response.text();
    return { content: [{ type: "text", text }] };
  }
  throw new Error("Unknown tool: " + request.params.name);
});

const transport = new StdioServerTransport();
await server.connect(transport);

Tool Definition Patterns

Input Schema Best Practices

Tool(
    name="search_database",
    description="Search the product database. Returns up to 10 results.",
    inputSchema={
        "type": "object",
        "properties": {
            "query": {
                "type": "string",
                "description": "Search query (supports wildcards with *)"
            },
            "category": {
                "type": "string",
                "enum": ["electronics", "clothing", "books"],
                "description": "Filter by category"
            },
            "max_results": {
                "type": "integer",
                "minimum": 1,
                "maximum": 50,
                "default": 10,
                "description": "Maximum results to return"
            }
        },
        "required": ["query"]
    }
)

Guidelines:

  • Always include description for each property
  • Use enum for fixed option sets
  • Set minimum/maximum for numbers
  • Mark required fields explicitly
  • Provide default values where sensible

Error Handling

@server.call_tool()
async def call_tool(name: str, arguments: dict) -> list[TextContent]:
    try:
        if name == "query_api":
            result = await external_api.query(arguments["query"])
            return [TextContent(type="text", text=json.dumps(result))]
    except ExternalAPIError as e:
        # Return error as text - Claude will see and handle it
        return [TextContent(
            type="text",
            text=f"Error: API returned {e.status_code}: {e.message}"
        )]
    except Exception as e:
        # Log internally, return user-friendly message
        logger.exception("Tool execution failed")
        return [TextContent(
            type="text",
            text=f"Error: {type(e).__name__}: {str(e)}"
        )]

Resource Patterns

File Resources

@server.list_resources()
async def list_resources() -> list[Resource]:
    return [
        Resource(
            uri="file:///config/settings.json",
            name="Settings",
            mimeType="application/json",
            description="Application configuration"
        )
    ]

@server.read_resource()
async def read_resource(uri: str) -> str:
    if uri == "file:///config/settings.json":
        return Path("settings.json").read_text()
    raise ValueError(f"Unknown resource: {uri}")

Dynamic Resources (API data)

@server.list_resources()
async def list_resources() -> list[Resource]:
    # List available data sources
    return [
        Resource(
            uri="api://users/current",
            name="Current User",
            mimeType="application/json"
        ),
        Resource(
            uri="api://metrics/today",
            name="Today's Metrics",
            mimeType="application/json"
        )
    ]

@server.read_resource()
async def read_resource(uri: str) -> str:
    if uri.startswith("api://"):
        endpoint = uri.replace("api://", "")
        data = await api_client.get(endpoint)
        return json.dumps(data, indent=2)

Transport Options

stdio (recommended for CLI)

// claude_desktop_config.json
{
  "mcpServers": {
    "my-tools": {
      "command": "python",
      "args": ["/path/to/server.py"],
      "env": {
        "API_KEY": "xxx"
      }
    }
  }
}

SSE (for web deployments)

from mcp.server.sse import SseServerTransport
from starlette.applications import Starlette
from starlette.routing import Route

sse = SseServerTransport("/messages")

async def handle_sse(request):
    async with sse.connect_sse(
        request.scope, request.receive, request._send
    ) as streams:
        await server.run(
            streams[0], streams[1],
            server.create_initialization_options()
        )

app = Starlette(routes=[
    Route("/sse", endpoint=handle_sse),
    Route("/messages", endpoint=sse.handle_post_message, methods=["POST"]),
])

Configuration in Claude Desktop

// ~/Library/Application Support/Claude/claude_desktop_config.json (macOS)
// %APPDATA%\Claude\claude_desktop_config.json (Windows)
{
  "mcpServers": {
    "database": {
      "command": "npx",
      "args": ["-y", "@myorg/db-tools"],
      "env": {
        "DATABASE_URL": "postgres://..."
      }
    },
    "python-tools": {
      "command": "uv",
      "args": ["run", "python", "-m", "my_mcp_server"],
      "cwd": "/path/to/project"
    }
  }
}

Testing

Manual Testing

# Test with MCP Inspector
npx @modelcontextprotocol/inspector python server.py

Automated Testing

import pytest
from mcp.client import Client
from mcp.client.stdio import stdio_client

@pytest.mark.asyncio
async def test_greet_tool():
    async with stdio_client("python", ["server.py"]) as (read, write):
        client = Client("test", "1.0.0")
        await client.connect(read, write)

        # List tools
        tools = await client.list_tools()
        assert any(t.name == "greet" for t in tools.tools)

        # Call tool
        result = await client.call_tool("greet", {"name": "World"})
        assert "Hello, World!" in result.content[0].text

Common Patterns

Caching Expensive Operations

from functools import lru_cache
from datetime import datetime, timedelta

_cache = {}
_cache_ttl = timedelta(minutes=5)

async def get_cached_data(key: str) -> dict:
    now = datetime.now()
    if key in _cache:
        data, timestamp = _cache[key]
        if now - timestamp < _cache_ttl:
            return data

    data = await expensive_fetch(key)
    _cache[key] = (data, now)
    return data

Rate Limiting

import asyncio
from collections import defaultdict

_request_times = defaultdict(list)
MAX_REQUESTS_PER_MINUTE = 60

async def rate_limited_call(user_id: str, func, *args):
    now = asyncio.get_event_loop().time()
    _request_times[user_id] = [
        t for t in _request_times[user_id]
        if now - t < 60
    ]

    if len(_request_times[user_id]) >= MAX_REQUESTS_PER_MINUTE:
        raise Exception("Rate limit exceeded. Try again in a minute.")

    _request_times[user_id].append(now)
    return await func(*args)

Anti-Patterns

  1. Stateful tools without cleanup: Always clean up connections/resources
  2. Blocking synchronous code: Use asyncio.to_thread() for blocking ops
  3. Missing input validation: Always validate before processing
  4. Secrets in tool output: Never return API keys or credentials
  5. Unbounded responses: Limit response sizes (Claude has context limits)

Resources