Ollama Local Inference
Run LLMs locally for cost savings, privacy, and offline development.
When to Use
- CI/CD pipelines (93% cost reduction)
- Development without API costs
- Privacy-sensitive data
- Offline environments
- High-volume batch processing
Quick Start
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Pull models
ollama pull deepseek-r1:70b # Reasoning (GPT-4 level)
ollama pull qwen2.5-coder:32b # Coding
ollama pull nomic-embed-text # Embeddings
# Start server
ollama serve
Recommended Models (M4 Max 256GB)
| Task |
Model |
Size |
Notes |
| Reasoning |
deepseek-r1:70b |
~42GB |
GPT-4 level |
| Coding |
qwen2.5-coder:32b |
~35GB |
73.7% Aider benchmark |
| Embeddings |
nomic-embed-text |
~0.5GB |
768 dims, fast |
| General |
llama3.2:70b |
~40GB |
Good all-around |
LangChain Integration
from langchain_ollama import ChatOllama, OllamaEmbeddings
# Chat model
llm = ChatOllama(
model="deepseek-r1:70b",
base_url="http://localhost:11434",
temperature=0.0,
num_ctx=32768, # Context window
keep_alive="5m", # Keep model loaded
)
# Embeddings
embeddings = OllamaEmbeddings(
model="nomic-embed-text",
base_url="http://localhost:11434",
)
# Generate
response = await llm.ainvoke("Explain async/await")
vector = await embeddings.aembed_query("search text")
Tool Calling with Ollama
from langchain_core.tools import tool
@tool
def search_docs(query: str) -> str:
"""Search the document database."""
return f"Found results for: {query}"
# Bind tools
llm_with_tools = llm.bind_tools([search_docs])
response = await llm_with_tools.ainvoke("Search for Python patterns")
Structured Output
from pydantic import BaseModel, Field
class CodeAnalysis(BaseModel):
language: str = Field(description="Programming language")
complexity: int = Field(ge=1, le=10)
issues: list[str] = Field(description="Found issues")
structured_llm = llm.with_structured_output(CodeAnalysis)
result = await structured_llm.ainvoke("Analyze this code: ...")
# result is typed CodeAnalysis object
Provider Factory Pattern
import os
def get_llm_provider(task_type: str = "general"):
"""Auto-switch between Ollama and cloud APIs."""
if os.getenv("OLLAMA_ENABLED") == "true":
models = {
"reasoning": "deepseek-r1:70b",
"coding": "qwen2.5-coder:32b",
"general": "llama3.2:70b",
}
return ChatOllama(
model=models.get(task_type, "llama3.2:70b"),
keep_alive="5m"
)
else:
# Fall back to cloud API
return ChatOpenAI(model="gpt-4o")
# Usage
llm = get_llm_provider(task_type="coding")
Environment Configuration
# .env.local
OLLAMA_ENABLED=true
OLLAMA_HOST=http://localhost:11434
OLLAMA_MODEL_REASONING=deepseek-r1:70b
OLLAMA_MODEL_CODING=qwen2.5-coder:32b
OLLAMA_MODEL_EMBED=nomic-embed-text
# Performance tuning (Apple Silicon)
OLLAMA_MAX_LOADED_MODELS=3 # Keep 3 models in memory
OLLAMA_KEEP_ALIVE=5m # 5 minute keep-alive
CI Integration
# GitHub Actions (self-hosted runner)
jobs:
test:
runs-on: self-hosted # M4 Max runner
env:
OLLAMA_ENABLED: "true"
steps:
- name: Pre-warm models
run: |
curl -s http://localhost:11434/api/embeddings \
-d '{"model":"nomic-embed-text","prompt":"warmup"}' > /dev/null
- name: Run tests
run: pytest tests/
Cost Comparison
| Provider |
Monthly Cost |
Latency |
| Cloud APIs |
~$675/month |
200-500ms |
| Ollama Local |
~$50 (electricity) |
50-200ms |
| Savings |
93% |
2-3x faster |
Best Practices
- DO use
keep_alive="5m" in CI (avoid cold starts)
- DO pre-warm models before first call
- DO set
num_ctx=32768 on Apple Silicon
- DO use provider factory for cloud/local switching
- DON'T use
keep_alive=-1 (wastes memory)
- DON'T skip pre-warming in CI (30-60s cold start)
Troubleshooting
# Check if Ollama is running
curl http://localhost:11434/api/tags
# List loaded models
ollama list
# Check model memory usage
ollama ps
# Pull specific version
ollama pull deepseek-r1:70b-q4_K_M
Related Skills
embeddings - Embedding patterns (works with nomic-embed-text)
llm-evaluation - Testing with local models
cost-optimization - Broader cost strategies