| name | gpt-researcher |
| description | Run GPT-Researcher multi-agent deep research framework locally using OpenAI GPT-5.2. Replaces ChatGPT Deep Research with local control. Researches 100+ sources in parallel, provides comprehensive citations. Use for Phase 3 industry/technical research or comprehensive synthesis. Takes 6-20 min depending on report type. Supports multiple LLM providers. |
GPT-Researcher Skill
Use this skill to run GPT-Researcher's multi-agent deep research framework locally with OpenAI's GPT-5.2 model.
What is GPT-Researcher?
GPT-Researcher is an autonomous multi-agent research framework that:
- Uses parallel agent execution for faster research
- Researches 100+ sources across the web
- Provides comprehensive citations and source validation
- Benchmarks competitively with ChatGPT Deep Research and Claude Research
- Runs locally with full control over configuration
Default Model: OpenAI GPT-5.2 (latest flagship model, 2025)
GPT-5.2 Highlights:
- Best general-purpose model for complex reasoning and agentic tasks
- Improved instruction following and accuracy over GPT-5.1
- Enhanced code generation and tool calling
- Better context management and token efficiency
- Knowledge cutoff: August 2025
Carnegie Mellon Benchmark (DeepResearchGym, May 2025): GPT-Researcher outperformed Perplexity, OpenAI Deep Research, and other tools on:
- Citation quality
- Report quality
- Information coverage
When to Use This Skill
Use GPT-Researcher for deep research tasks in the podcast episode workflow:
- Phase 3: Industry & Technical Research (replaces ChatGPT Deep Research browser automation)
- Phase 3: Comprehensive Synthesis (alternative to Claude Deep Research)
- Any multi-dimensional research requiring parallel information gathering
Advantages over browser automation:
- No Chrome/browser required
- Fully scriptable and reproducible
- Choose any LLM provider (OpenAI, Anthropic, etc.)
- Run in background or CI/CD pipelines
- Complete control over configuration
Installation
This skill requires uv, a fast Python package manager:
# Install uv (if not already installed)
curl -LsSf https://astral.sh/uv/install.sh | sh
# Install dependencies
cd /Users/valorengels/src/research/podcast/tools
uv pip install gpt-researcher langchain-openai python-dotenv
Configuration
API keys are stored in /Users/valorengels/.env and auto-loaded via ~/.zshenv for all shells.
Required for default:
- OPENAI_API_KEY - For GPT-5.2, GPT-5.2-Pro, etc.
Optional providers:
- OPENROUTER_API_KEY - Unified access to 400+ models
- ANTHROPIC_API_KEY - Claude Opus, Sonnet
- XAI_API_KEY - Grok models
Usage
Basic Usage (GPT-5.2)
cd /Users/valorengels/src/research/podcast/tools
uv run python gpt_researcher_run.py "Your research prompt here"
This uses GPT-5.2 by default - OpenAI's latest and most capable general-purpose model.
Read Prompt from File
cd /Users/valorengels/src/research/podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/prompt.txt
Save to File
uv run python gpt_researcher_run.py "prompt" --output results.md
Specify Different Model
# Use GPT-5.2-Pro for harder thinking (more compute)
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5.2-pro
# Use GPT-5-Mini for cost-optimized research
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5-mini
# Use Anthropic Claude Opus 4
uv run python gpt_researcher_run.py "prompt" --model anthropic:claude-opus-4
# Use OpenRouter for any model
uv run python gpt_researcher_run.py "prompt" --model openrouter/anthropic/claude-opus-4.5
Report Types
# Standard research report (default, 6-10 min)
uv run python gpt_researcher_run.py "prompt" --report-type research_report
# Detailed comprehensive report (10-20 min)
uv run python gpt_researcher_run.py "prompt" --report-type detailed_report
# Quick report (3-5 min, fewer sources)
uv run python gpt_researcher_run.py "prompt" --report-type quick_report
Integration with Podcast Workflow
Phase 3: Industry & Technical Research
Replaces: ChatGPT Deep Research browser automation
Use Case: Industry reports, technical documentation, case studies
cd podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/phase3_prompt.txt \
--model openai:gpt-5.2 \
--report-type research_report \
--output ../episodes/YYYY-MM-DD-slug/research-results-industry.md
Expected time: 6-10 minutes Output: Research report with 50-100+ sources, industry and technical focus
Phase 3: Comprehensive Synthesis
Use Case: Deep multi-dimensional research with comprehensive synthesis
cd podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/phase3_prompt.txt \
--model openai:gpt-5.2 \
--report-type detailed_report \
--output ../episodes/YYYY-MM-DD-slug/research-results-comprehensive.md
Expected time: 10-20 minutes Output: Comprehensive report with 100+ sources, multi-agent synthesis
Using GPT-5.2-Pro for Complex Problems
For particularly challenging research that requires deeper thinking:
cd podcast/tools
uv run python gpt_researcher_run.py --file ../episodes/YYYY-MM-DD-slug/prompt.txt \
--model openai:gpt-5.2-pro \
--report-type detailed_report \
--output ../episodes/YYYY-MM-DD-slug/research-results-pro.md
Expected time: 15-25 minutes Output: Highest quality research with extended reasoning
Output Format
The script outputs markdown-formatted research with:
- Header: Date, model, prompt
- Research report: Comprehensive findings with structure
- Citations: Inline citations with source URLs
- Sources: List of sources researched
Example output structure:
# GPT-Researcher Results
**Date:** 2025-12-14 14:30
**Model:** openai:gpt-5.2
**Prompt:** Research early childhood educator burnout interventions
---
## Executive Summary
[Comprehensive overview]
## Key Findings
[Detailed findings with citations]
## Methodology Considerations
[Study quality notes]
## Sources
[List of 100+ sources with URLs]
Why GPT-5.2 for Research?
OpenAI's GPT-5.2 is their latest flagship model optimized for:
- Complex reasoning - Multi-step analysis and synthesis
- Research tasks - Information gathering and validation
- Agentic workflows - Tool calling and context management
- Accuracy - Improved instruction following and token efficiency
- Code generation - Especially front-end UI creation
- Multimodality - Enhanced vision capabilities
This makes it ideal for deep research compared to previous models.
Model comparison:
- gpt-5.2: Best for complex reasoning and comprehensive research
- gpt-5.2-pro: Best for hardest problems requiring extended thinking
- gpt-5-mini: Best for cost-optimized research
- claude-opus-4: Best for synthesis and writing quality
Comparison: GPT-Researcher vs ChatGPT Deep Research
| Feature | GPT-Researcher (Local) | ChatGPT Deep Research (Browser) |
|---|---|---|
| Model | GPT-5.2 (latest) | ChatGPT (whatever's enabled) |
| Control | Full local control | Browser automation |
| Setup | API key only | Chrome + auth + browser automation |
| Reliability | High (API) | Medium (UI changes) |
| Sources analyzed | 100+ | 25-50 |
| Processing time | 6-20 min | 5-10 min |
| Cost | Pay-per-use (~$0.27-2) | $200/mo subscription |
| Headless | Yes | No (needs browser) |
| Maintenance | Low | High (UI changes) |
| Benchmark | CMU winner | Commercial |
Decision: GPT-Researcher with GPT-5.2 replaces ChatGPT Deep Research browser automation.
Advanced Usage
Environment Variables
GPT-Researcher uses these environment variables (set in .env):
# Required: At least one API key
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
OPENROUTER_API_KEY=sk-or-...
XAI_API_KEY=...
# Optional: Override via --model flag
FAST_LLM=openai:gpt-5.2 # Quick tasks
SMART_LLM=openai:gpt-5.2 # Deep analysis
STRATEGIC_LLM=openai:gpt-5.2 # Planning
# Optional: Search provider
RETRIEVER=tavily # Default (best quality)
# or: duckduckgo (free fallback)
Custom Model Selection
# Latest OpenAI GPT-5 family (2025)
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5.2 # Best for research
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5.2-pro # Harder thinking
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5-mini # Cost-optimized
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-5-nano # High-throughput
# Legacy OpenAI models
uv run python gpt_researcher_run.py "prompt" --model openai:o1 # Legacy reasoning
uv run python gpt_researcher_run.py "prompt" --model openai:gpt-4o # Legacy multimodal
# Anthropic Claude
uv run python gpt_researcher_run.py "prompt" --model anthropic:claude-opus-4
uv run python gpt_researcher_run.py "prompt" --model anthropic:claude-sonnet-4
# Via OpenRouter (single API key for all)
uv run python gpt_researcher_run.py "prompt" --model openrouter/openai/gpt-5.2
uv run python gpt_researcher_run.py "prompt" --model openrouter/anthropic/claude-opus-4.5
uv run python gpt_researcher_run.py "prompt" --model openrouter/x-ai/grok-4
Troubleshooting
Error: "No API keys found"
- Check
.envfiles exist in root orpodcast/tools/ - Ensure
OPENAI_API_KEYis set for default GPT-5.2 model - Verify
.envformat:KEY=value(no spaces around=)
Error: "gpt-researcher not installed"
- Run:
cd podcast/tools && uv pip install gpt-researcher langchain-openai python-dotenv - Or ensure you're using:
uv run python gpt_researcher_run.py(auto-installs dependencies)
Research times out or fails
- Try
--report-type quick_reportfor faster results - Check API key has sufficient credits
- Verify OpenAI API key is valid
- Use
--model openai:gpt-5-minifor faster/cheaper alternative
Model not found
- For OpenRouter models, use format:
openrouter/provider/model - Check model names at https://openrouter.ai/models
- For native providers, use format:
provider:model
GPT-5.2 model errors
- Ensure you have access to GPT-5.2 in your OpenAI account
- Fallback to
--model openai:gpt-5-miniif GPT-5.2 unavailable - Check OpenAI API status page
Example Commands
Basic research with GPT-5.2:
uv run python gpt_researcher_run.py "Research quantum computing applications in healthcare"
From file with output:
uv run python gpt_researcher_run.py \
--file research-prompt.txt \
--output results.md
Industry research (typical Phase 3):
uv run python gpt_researcher_run.py \
--file ../episodes/episode-dir/prompt.txt \
--model openai:gpt-5.2 \
--report-type research_report \
--output ../episodes/episode-dir/research-industry.md
Hardest problems with GPT-5.2-Pro:
uv run python gpt_researcher_run.py \
--file prompt.txt \
--model openai:gpt-5.2-pro \
--report-type detailed_report \
--output results-pro.md
Cost-optimized with GPT-5-Mini:
uv run python gpt_researcher_run.py \
--file prompt.txt \
--model openai:gpt-5-mini \
--report-type quick_report \
--output results-mini.md
Comprehensive with Claude:
uv run python gpt_researcher_run.py \
--file prompt.txt \
--model anthropic:claude-opus-4 \
--report-type detailed_report \
--output results-comprehensive.md
Notes
- Default model: OpenAI GPT-5.2 (latest flagship, 2025)
- Processing time: Budget 6-20 minutes for comprehensive research
- API costs: Typically $0.27-2 per research session (varies by model and sources)
- Quality: Competitive with ChatGPT Deep Research on benchmarks
- Local execution: Runs on your machine, full control over configuration
- No browser required: Pure API-based, works in any environment
- Replaces: ChatGPT Deep Research browser automation (deprecated)
- Knowledge cutoff: GPT-5.2 has August 2025 cutoff (most current)