Claude Code Plugins

Community-maintained marketplace

Feedback
374
0

Evaluates code generation models across HumanEval, MBPP, MultiPL-E, and 15+ benchmarks with pass@k metrics. Use when benchmarking code models, comparing coding abilities, testing multi-language support, or measuring code generation quality. Industry standard from BigCode Project used by HuggingFace leaderboards.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name evaluating-code-models
description Evaluates code generation models across HumanEval, MBPP, MultiPL-E, and 15+ benchmarks with pass@k metrics. Use when benchmarking code models, comparing coding abilities, testing multi-language support, or measuring code generation quality. Industry standard from BigCode Project used by HuggingFace leaderboards.
version 1.0.0
author Orchestra Research
license MIT
tags Evaluation, Code Generation, HumanEval, MBPP, MultiPL-E, Pass@k, BigCode, Benchmarking, Code Models
dependencies bigcode-evaluation-harness, transformers>=4.25.1, accelerate>=0.13.2, datasets>=2.6.1

BigCode Evaluation Harness - Code Model Benchmarking

Quick Start

BigCode Evaluation Harness evaluates code generation models across 15+ benchmarks including HumanEval, MBPP, and MultiPL-E (18 languages).

Installation:

git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
cd bigcode-evaluation-harness
pip install -e .
accelerate config

Evaluate on HumanEval:

accelerate launch main.py \
  --model bigcode/starcoder2-7b \
  --tasks humaneval \
  --max_length_generation 512 \
  --temperature 0.2 \
  --n_samples 20 \
  --batch_size 10 \
  --allow_code_execution \
  --save_generations

View available tasks:

python -c "from bigcode_eval.tasks import ALL_TASKS; print(ALL_TASKS)"

Common Workflows

Workflow 1: Standard Code Benchmark Evaluation

Evaluate model on core code benchmarks (HumanEval, MBPP, HumanEval+).

Checklist:

Code Benchmark Evaluation:
- [ ] Step 1: Choose benchmark suite
- [ ] Step 2: Configure model and generation
- [ ] Step 3: Run evaluation with code execution
- [ ] Step 4: Analyze pass@k results

Step 1: Choose benchmark suite

Python code generation (most common):

  • HumanEval: 164 handwritten problems, function completion
  • HumanEval+: Same 164 problems with 80× more tests (stricter)
  • MBPP: 500 crowd-sourced problems, entry-level difficulty
  • MBPP+: 399 curated problems with 35× more tests

Multi-language (18 languages):

  • MultiPL-E: HumanEval/MBPP translated to C++, Java, JavaScript, Go, Rust, etc.

Advanced:

  • APPS: 10,000 problems (introductory/interview/competition)
  • DS-1000: 1,000 data science problems across 7 libraries

Step 2: Configure model and generation

# Standard HuggingFace model
accelerate launch main.py \
  --model bigcode/starcoder2-7b \
  --tasks humaneval \
  --max_length_generation 512 \
  --temperature 0.2 \
  --do_sample True \
  --n_samples 200 \
  --batch_size 50 \
  --allow_code_execution

# Quantized model (4-bit)
accelerate launch main.py \
  --model codellama/CodeLlama-34b-hf \
  --tasks humaneval \
  --load_in_4bit \
  --max_length_generation 512 \
  --allow_code_execution

# Custom/private model
accelerate launch main.py \
  --model /path/to/my-code-model \
  --tasks humaneval \
  --trust_remote_code \
  --use_auth_token \
  --allow_code_execution

Step 3: Run evaluation

# Full evaluation with pass@k estimation (k=1,10,100)
accelerate launch main.py \
  --model bigcode/starcoder2-7b \
  --tasks humaneval \
  --temperature 0.8 \
  --n_samples 200 \
  --batch_size 50 \
  --allow_code_execution \
  --save_generations \
  --metric_output_path results/starcoder2-humaneval.json

Step 4: Analyze results

Results in results/starcoder2-humaneval.json:

{
  "humaneval": {
    "pass@1": 0.354,
    "pass@10": 0.521,
    "pass@100": 0.689
  },
  "config": {
    "model": "bigcode/starcoder2-7b",
    "temperature": 0.8,
    "n_samples": 200
  }
}

Workflow 2: Multi-Language Evaluation (MultiPL-E)

Evaluate code generation across 18 programming languages.

Checklist:

Multi-Language Evaluation:
- [ ] Step 1: Generate solutions (host machine)
- [ ] Step 2: Run evaluation in Docker (safe execution)
- [ ] Step 3: Compare across languages

Step 1: Generate solutions on host

# Generate without execution (safe)
accelerate launch main.py \
  --model bigcode/starcoder2-7b \
  --tasks multiple-py,multiple-js,multiple-java,multiple-cpp \
  --max_length_generation 650 \
  --temperature 0.8 \
  --n_samples 50 \
  --batch_size 50 \
  --generation_only \
  --save_generations \
  --save_generations_path generations_multi.json

Step 2: Evaluate in Docker container

# Pull the MultiPL-E Docker image
docker pull ghcr.io/bigcode-project/evaluation-harness-multiple

# Run evaluation inside container
docker run -v $(pwd)/generations_multi.json:/app/generations.json:ro \
  -it evaluation-harness-multiple python3 main.py \
  --model bigcode/starcoder2-7b \
  --tasks multiple-py,multiple-js,multiple-java,multiple-cpp \
  --load_generations_path /app/generations.json \
  --allow_code_execution \
  --n_samples 50

Supported languages: Python, JavaScript, Java, C++, Go, Rust, TypeScript, C#, PHP, Ruby, Swift, Kotlin, Scala, Perl, Julia, Lua, R, Racket

Workflow 3: Instruction-Tuned Model Evaluation

Evaluate chat/instruction models with proper formatting.

Checklist:

Instruction Model Evaluation:
- [ ] Step 1: Use instruction-tuned tasks
- [ ] Step 2: Configure instruction tokens
- [ ] Step 3: Run evaluation

Step 1: Choose instruction tasks

  • instruct-humaneval: HumanEval with instruction prompts
  • humanevalsynthesize-{lang}: HumanEvalPack synthesis tasks

Step 2: Configure instruction tokens

# For models with chat templates (e.g., CodeLlama-Instruct)
accelerate launch main.py \
  --model codellama/CodeLlama-7b-Instruct-hf \
  --tasks instruct-humaneval \
  --instruction_tokens "<s>[INST],</s>,[/INST]" \
  --max_length_generation 512 \
  --allow_code_execution

Step 3: HumanEvalPack for instruction models

# Test code synthesis across 6 languages
accelerate launch main.py \
  --model codellama/CodeLlama-7b-Instruct-hf \
  --tasks humanevalsynthesize-python,humanevalsynthesize-js \
  --prompt instruct \
  --max_length_generation 512 \
  --allow_code_execution

Workflow 4: Compare Multiple Models

Benchmark suite for model comparison.

Step 1: Create evaluation script

#!/bin/bash
# eval_models.sh

MODELS=(
  "bigcode/starcoder2-7b"
  "codellama/CodeLlama-7b-hf"
  "deepseek-ai/deepseek-coder-6.7b-base"
)
TASKS="humaneval,mbpp"

for model in "${MODELS[@]}"; do
  model_name=$(echo $model | tr '/' '-')
  echo "Evaluating $model"

  accelerate launch main.py \
    --model $model \
    --tasks $TASKS \
    --temperature 0.2 \
    --n_samples 20 \
    --batch_size 20 \
    --allow_code_execution \
    --metric_output_path results/${model_name}.json
done

Step 2: Generate comparison table

import json
import pandas as pd

models = ["bigcode-starcoder2-7b", "codellama-CodeLlama-7b-hf", "deepseek-ai-deepseek-coder-6.7b-base"]
results = []

for model in models:
    with open(f"results/{model}.json") as f:
        data = json.load(f)
        results.append({
            "Model": model,
            "HumanEval pass@1": f"{data['humaneval']['pass@1']:.3f}",
            "MBPP pass@1": f"{data['mbpp']['pass@1']:.3f}"
        })

df = pd.DataFrame(results)
print(df.to_markdown(index=False))

When to Use vs Alternatives

Use BigCode Evaluation Harness when:

  • Evaluating code generation models specifically
  • Need multi-language evaluation (18 languages via MultiPL-E)
  • Testing functional correctness with unit tests (pass@k)
  • Benchmarking for BigCode/HuggingFace leaderboards
  • Evaluating fill-in-the-middle (FIM) capabilities

Use alternatives instead:

  • lm-evaluation-harness: General LLM benchmarks (MMLU, GSM8K, HellaSwag)
  • EvalPlus: Stricter HumanEval+/MBPP+ with more test cases
  • SWE-bench: Real-world GitHub issue resolution
  • LiveCodeBench: Contamination-free, continuously updated problems
  • CodeXGLUE: Code understanding tasks (clone detection, defect prediction)

Supported Benchmarks

Benchmark Problems Languages Metric Use Case
HumanEval 164 Python pass@k Standard code completion
HumanEval+ 164 Python pass@k Stricter evaluation (80× tests)
MBPP 500 Python pass@k Entry-level problems
MBPP+ 399 Python pass@k Stricter evaluation (35× tests)
MultiPL-E 164×18 18 languages pass@k Multi-language evaluation
APPS 10,000 Python pass@k Competition-level
DS-1000 1,000 Python pass@k Data science (pandas, numpy, etc.)
HumanEvalPack 164×3×6 6 languages pass@k Synthesis/fix/explain
Mercury 1,889 Python Efficiency Computational efficiency

Common Issues

Issue: Different results than reported in papers

Check these factors:

# 1. Verify n_samples (need 200 for accurate pass@k)
--n_samples 200

# 2. Check temperature (0.2 for greedy-ish, 0.8 for sampling)
--temperature 0.8

# 3. Verify task name matches exactly
--tasks humaneval  # Not "human_eval" or "HumanEval"

# 4. Check max_length_generation
--max_length_generation 512  # Increase for longer problems

Issue: CUDA out of memory

# Use quantization
--load_in_8bit
# OR
--load_in_4bit

# Reduce batch size
--batch_size 1

# Set memory limit
--max_memory_per_gpu "20GiB"

Issue: Code execution hangs or times out

Use Docker for safe execution:

# Generate on host (no execution)
--generation_only --save_generations

# Evaluate in Docker
docker run ... --allow_code_execution --load_generations_path ...

Issue: Low scores on instruction models

Ensure proper instruction formatting:

# Use instruction-specific tasks
--tasks instruct-humaneval

# Set instruction tokens for your model
--instruction_tokens "<s>[INST],</s>,[/INST]"

Issue: MultiPL-E language failures

Use the dedicated Docker image:

docker pull ghcr.io/bigcode-project/evaluation-harness-multiple

Command Reference

Argument Default Description
--model - HuggingFace model ID or local path
--tasks - Comma-separated task names
--n_samples 1 Samples per problem (200 for pass@k)
--temperature 0.2 Sampling temperature
--max_length_generation 512 Max tokens (prompt + generation)
--batch_size 1 Batch size per GPU
--allow_code_execution False Enable code execution (required)
--generation_only False Generate without evaluation
--load_generations_path - Load pre-generated solutions
--save_generations False Save generated code
--metric_output_path results.json Output file for metrics
--load_in_8bit False 8-bit quantization
--load_in_4bit False 4-bit quantization
--trust_remote_code False Allow custom model code
--precision fp32 Model precision (fp32/fp16/bf16)

Hardware Requirements

Model Size VRAM (fp16) VRAM (4-bit) Time (HumanEval, n=200)
7B 14GB 6GB ~30 min (A100)
13B 26GB 10GB ~1 hour (A100)
34B 68GB 20GB ~2 hours (A100)

Resources