Claude Code Plugins

Community-maintained marketplace

Feedback

Open-source embedding database for AI applications. Store embeddings and metadata, perform vector and full-text search, filter by metadata. Simple 4-function API. Scales from notebooks to production clusters. Use for semantic search, RAG applications, or document retrieval. Best for local development and open-source projects.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name chroma
description Open-source embedding database for AI applications. Store embeddings and metadata, perform vector and full-text search, filter by metadata. Simple 4-function API. Scales from notebooks to production clusters. Use for semantic search, RAG applications, or document retrieval. Best for local development and open-source projects.

Chroma - Open-Source Embedding Database

The AI-native database for building LLM applications with memory.

When to use Chroma

Use Chroma when:

  • Building RAG (retrieval-augmented generation) applications
  • Need local/self-hosted vector database
  • Want open-source solution (Apache 2.0)
  • Prototyping in notebooks
  • Semantic search over documents
  • Storing embeddings with metadata

Metrics:

  • 24,300+ GitHub stars
  • 1,900+ forks
  • v1.3.3 (stable, weekly releases)
  • Apache 2.0 license

Use alternatives instead:

  • Pinecone: Managed cloud, auto-scaling
  • FAISS: Pure similarity search, no metadata
  • Weaviate: Production ML-native database
  • Qdrant: High performance, Rust-based

Quick start

Installation

# Python
pip install chromadb

# JavaScript/TypeScript
npm install chromadb @chroma-core/default-embed

Basic usage (Python)

import chromadb

# Create client
client = chromadb.Client()

# Create collection
collection = client.create_collection(name="my_collection")

# Add documents
collection.add(
    documents=["This is document 1", "This is document 2"],
    metadatas=[{"source": "doc1"}, {"source": "doc2"}],
    ids=["id1", "id2"]
)

# Query
results = collection.query(
    query_texts=["document about topic"],
    n_results=2
)

print(results)

Core operations

1. Create collection

# Simple collection
collection = client.create_collection("my_docs")

# With custom embedding function
from chromadb.utils import embedding_functions

openai_ef = embedding_functions.OpenAIEmbeddingFunction(
    api_key="your-key",
    model_name="text-embedding-3-small"
)

collection = client.create_collection(
    name="my_docs",
    embedding_function=openai_ef
)

# Get existing collection
collection = client.get_collection("my_docs")

# Delete collection
client.delete_collection("my_docs")

2. Add documents

# Add with auto-generated IDs
collection.add(
    documents=["Doc 1", "Doc 2", "Doc 3"],
    metadatas=[
        {"source": "web", "category": "tutorial"},
        {"source": "pdf", "page": 5},
        {"source": "api", "timestamp": "2025-01-01"}
    ],
    ids=["id1", "id2", "id3"]
)

# Add with custom embeddings
collection.add(
    embeddings=[[0.1, 0.2, ...], [0.3, 0.4, ...]],
    documents=["Doc 1", "Doc 2"],
    ids=["id1", "id2"]
)

3. Query (similarity search)

# Basic query
results = collection.query(
    query_texts=["machine learning tutorial"],
    n_results=5
)

# Query with filters
results = collection.query(
    query_texts=["Python programming"],
    n_results=3,
    where={"source": "web"}
)

# Query with metadata filters
results = collection.query(
    query_texts=["advanced topics"],
    where={
        "$and": [
            {"category": "tutorial"},
            {"difficulty": {"$gte": 3}}
        ]
    }
)

# Access results
print(results["documents"])      # List of matching documents
print(results["metadatas"])      # Metadata for each doc
print(results["distances"])      # Similarity scores
print(results["ids"])            # Document IDs

4. Get documents

# Get by IDs
docs = collection.get(
    ids=["id1", "id2"]
)

# Get with filters
docs = collection.get(
    where={"category": "tutorial"},
    limit=10
)

# Get all documents
docs = collection.get()

5. Update documents

# Update document content
collection.update(
    ids=["id1"],
    documents=["Updated content"],
    metadatas=[{"source": "updated"}]
)

6. Delete documents

# Delete by IDs
collection.delete(ids=["id1", "id2"])

# Delete with filter
collection.delete(
    where={"source": "outdated"}
)

Persistent storage

# Persist to disk
client = chromadb.PersistentClient(path="./chroma_db")

collection = client.create_collection("my_docs")
collection.add(documents=["Doc 1"], ids=["id1"])

# Data persisted automatically
# Reload later with same path
client = chromadb.PersistentClient(path="./chroma_db")
collection = client.get_collection("my_docs")

Embedding functions

Default (Sentence Transformers)

# Uses sentence-transformers by default
collection = client.create_collection("my_docs")
# Default model: all-MiniLM-L6-v2

OpenAI

from chromadb.utils import embedding_functions

openai_ef = embedding_functions.OpenAIEmbeddingFunction(
    api_key="your-key",
    model_name="text-embedding-3-small"
)

collection = client.create_collection(
    name="openai_docs",
    embedding_function=openai_ef
)

HuggingFace

huggingface_ef = embedding_functions.HuggingFaceEmbeddingFunction(
    api_key="your-key",
    model_name="sentence-transformers/all-mpnet-base-v2"
)

collection = client.create_collection(
    name="hf_docs",
    embedding_function=huggingface_ef
)

Custom embedding function

from chromadb import Documents, EmbeddingFunction, Embeddings

class MyEmbeddingFunction(EmbeddingFunction):
    def __call__(self, input: Documents) -> Embeddings:
        # Your embedding logic
        return embeddings

my_ef = MyEmbeddingFunction()
collection = client.create_collection(
    name="custom_docs",
    embedding_function=my_ef
)

Metadata filtering

# Exact match
results = collection.query(
    query_texts=["query"],
    where={"category": "tutorial"}
)

# Comparison operators
results = collection.query(
    query_texts=["query"],
    where={"page": {"$gt": 10}}  # $gt, $gte, $lt, $lte, $ne
)

# Logical operators
results = collection.query(
    query_texts=["query"],
    where={
        "$and": [
            {"category": "tutorial"},
            {"difficulty": {"$lte": 3}}
        ]
    }  # Also: $or
)

# Contains
results = collection.query(
    query_texts=["query"],
    where={"tags": {"$in": ["python", "ml"]}}
)

LangChain integration

from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter

# Split documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000)
docs = text_splitter.split_documents(documents)

# Create Chroma vector store
vectorstore = Chroma.from_documents(
    documents=docs,
    embedding=OpenAIEmbeddings(),
    persist_directory="./chroma_db"
)

# Query
results = vectorstore.similarity_search("machine learning", k=3)

# As retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})

LlamaIndex integration

from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
import chromadb

# Initialize Chroma
db = chromadb.PersistentClient(path="./chroma_db")
collection = db.get_or_create_collection("my_collection")

# Create vector store
vector_store = ChromaVectorStore(chroma_collection=collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

# Create index
index = VectorStoreIndex.from_documents(
    documents,
    storage_context=storage_context
)

# Query
query_engine = index.as_query_engine()
response = query_engine.query("What is machine learning?")

Server mode

# Run Chroma server
# Terminal: chroma run --path ./chroma_db --port 8000

# Connect to server
import chromadb
from chromadb.config import Settings

client = chromadb.HttpClient(
    host="localhost",
    port=8000,
    settings=Settings(anonymized_telemetry=False)
)

# Use as normal
collection = client.get_or_create_collection("my_docs")

Best practices

  1. Use persistent client - Don't lose data on restart
  2. Add metadata - Enables filtering and tracking
  3. Batch operations - Add multiple docs at once
  4. Choose right embedding model - Balance speed/quality
  5. Use filters - Narrow search space
  6. Unique IDs - Avoid collisions
  7. Regular backups - Copy chroma_db directory
  8. Monitor collection size - Scale up if needed
  9. Test embedding functions - Ensure quality
  10. Use server mode for production - Better for multi-user

Performance

Operation Latency Notes
Add 100 docs ~1-3s With embedding
Query (top 10) ~50-200ms Depends on collection size
Metadata filter ~10-50ms Fast with proper indexing

Resources