Claude Code Plugins

Community-maintained marketplace

Feedback

Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name hqq-quantization
description Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
version 1.0.0
author Orchestra Research
license MIT
tags Quantization, HQQ, Optimization, Memory Efficiency, Inference, Model Compression
dependencies hqq>=0.2.0, torch>=2.0.0

HQQ - Half-Quadratic Quantization

Fast, calibration-free weight quantization supporting 8/4/3/2/1-bit precision with multiple optimized backends.

When to use HQQ

Use HQQ when:

  • Quantizing models without calibration data (no dataset needed)
  • Need fast quantization (minutes vs hours for GPTQ/AWQ)
  • Deploying with vLLM or HuggingFace Transformers
  • Fine-tuning quantized models with LoRA/PEFT
  • Experimenting with extreme quantization (2-bit, 1-bit)

Key advantages:

  • No calibration: Quantize any model instantly without sample data
  • Multiple backends: PyTorch, ATEN, TorchAO, Marlin, BitBlas for optimized inference
  • Flexible precision: 8/4/3/2/1-bit with configurable group sizes
  • Framework integration: Native HuggingFace and vLLM support
  • PEFT compatible: Fine-tune quantized models with LoRA

Use alternatives instead:

  • AWQ: Need calibration-based accuracy, production serving
  • GPTQ: Maximum accuracy with calibration data available
  • bitsandbytes: Simple 8-bit/4-bit without custom backends
  • llama.cpp/GGUF: CPU inference, Apple Silicon deployment

Quick start

Installation

pip install hqq

# With specific backend
pip install hqq[torch]      # PyTorch backend
pip install hqq[torchao]    # TorchAO int4 backend
pip install hqq[bitblas]    # BitBlas backend
pip install hqq[marlin]     # Marlin backend

Basic quantization

from hqq.core.quantize import BaseQuantizeConfig, HQQLinear
import torch.nn as nn

# Configure quantization
config = BaseQuantizeConfig(
    nbits=4,           # 4-bit quantization
    group_size=64,     # Group size for quantization
    axis=1             # Quantize along output dimension
)

# Quantize a linear layer
linear = nn.Linear(4096, 4096)
hqq_linear = HQQLinear(linear, config)

# Use normally
output = hqq_linear(input_tensor)

Quantize full model with HuggingFace

from transformers import AutoModelForCausalLM, HqqConfig

# Configure HQQ
quantization_config = HqqConfig(
    nbits=4,
    group_size=64,
    axis=1
)

# Load and quantize
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B",
    quantization_config=quantization_config,
    device_map="auto"
)

# Model is quantized and ready to use

Core concepts

Quantization configuration

HQQ uses BaseQuantizeConfig to define quantization parameters:

from hqq.core.quantize import BaseQuantizeConfig

# Standard 4-bit config
config_4bit = BaseQuantizeConfig(
    nbits=4,           # Bits per weight (1-8)
    group_size=64,     # Weights per quantization group
    axis=1             # 0=input dim, 1=output dim
)

# Aggressive 2-bit config
config_2bit = BaseQuantizeConfig(
    nbits=2,
    group_size=16,     # Smaller groups for low-bit
    axis=1
)

# Mixed precision per layer type
layer_configs = {
    "self_attn.q_proj": BaseQuantizeConfig(nbits=4, group_size=64),
    "self_attn.k_proj": BaseQuantizeConfig(nbits=4, group_size=64),
    "self_attn.v_proj": BaseQuantizeConfig(nbits=4, group_size=64),
    "mlp.gate_proj": BaseQuantizeConfig(nbits=2, group_size=32),
    "mlp.up_proj": BaseQuantizeConfig(nbits=2, group_size=32),
    "mlp.down_proj": BaseQuantizeConfig(nbits=4, group_size=64),
}

HQQLinear layer

The core quantized layer that replaces nn.Linear:

from hqq.core.quantize import HQQLinear
import torch

# Create quantized layer
linear = torch.nn.Linear(4096, 4096)
hqq_layer = HQQLinear(linear, config)

# Access quantized weights
W_q = hqq_layer.W_q           # Quantized weights
scale = hqq_layer.scale       # Scale factors
zero = hqq_layer.zero         # Zero points

# Dequantize for inspection
W_dequant = hqq_layer.dequantize()

Backends

HQQ supports multiple inference backends for different hardware:

from hqq.core.quantize import HQQLinear

# Available backends
backends = [
    "pytorch",          # Pure PyTorch (default)
    "pytorch_compile",  # torch.compile optimized
    "aten",            # Custom CUDA kernels
    "torchao_int4",    # TorchAO int4 matmul
    "gemlite",         # GemLite CUDA kernels
    "bitblas",         # BitBlas optimized
    "marlin",          # Marlin 4-bit kernels
]

# Set backend globally
HQQLinear.set_backend("torchao_int4")

# Or per layer
hqq_layer.set_backend("marlin")

Backend selection guide:

Backend Best For Requirements
pytorch Compatibility Any GPU
pytorch_compile Moderate speedup torch>=2.0
aten Good balance CUDA GPU
torchao_int4 4-bit inference torchao installed
marlin Maximum 4-bit speed Ampere+ GPU
bitblas Flexible bit-widths bitblas installed

HuggingFace integration

Load pre-quantized models

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load HQQ-quantized model from Hub
model = AutoModelForCausalLM.from_pretrained(
    "mobiuslabsgmbh/Llama-3.1-8B-HQQ-4bit",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")

# Use normally
inputs = tokenizer("Hello, world!", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)

Quantize and save

from transformers import AutoModelForCausalLM, HqqConfig

# Quantize
config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B",
    quantization_config=config,
    device_map="auto"
)

# Save quantized model
model.save_pretrained("./llama-8b-hqq-4bit")

# Push to Hub
model.push_to_hub("my-org/Llama-3.1-8B-HQQ-4bit")

Mixed precision quantization

from transformers import AutoModelForCausalLM, HqqConfig

# Different precision per layer type
config = HqqConfig(
    nbits=4,
    group_size=64,
    # Attention layers: higher precision
    # MLP layers: lower precision for memory savings
    dynamic_config={
        "attn": {"nbits": 4, "group_size": 64},
        "mlp": {"nbits": 2, "group_size": 32}
    }
)

vLLM integration

Serve HQQ models with vLLM

from vllm import LLM, SamplingParams

# Load HQQ-quantized model
llm = LLM(
    model="mobiuslabsgmbh/Llama-3.1-8B-HQQ-4bit",
    quantization="hqq",
    dtype="float16"
)

# Generate
sampling_params = SamplingParams(temperature=0.7, max_tokens=100)
outputs = llm.generate(["What is machine learning?"], sampling_params)

vLLM with custom HQQ config

from vllm import LLM

llm = LLM(
    model="meta-llama/Llama-3.1-8B",
    quantization="hqq",
    quantization_config={
        "nbits": 4,
        "group_size": 64
    }
)

PEFT/LoRA fine-tuning

Fine-tune quantized models

from transformers import AutoModelForCausalLM, HqqConfig
from peft import LoraConfig, get_peft_model

# Load quantized model
quant_config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B",
    quantization_config=quant_config,
    device_map="auto"
)

# Apply LoRA
lora_config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, lora_config)

# Train normally with Trainer or custom loop

QLoRA-style training

from transformers import TrainingArguments, Trainer

training_args = TrainingArguments(
    output_dir="./hqq-lora-output",
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    learning_rate=2e-4,
    num_train_epochs=3,
    fp16=True,
    logging_steps=10,
    save_strategy="epoch"
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    data_collator=data_collator
)

trainer.train()

Quantization workflows

Workflow 1: Quick model compression

from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig

# 1. Configure quantization
config = HqqConfig(nbits=4, group_size=64)

# 2. Load and quantize (no calibration needed!)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B",
    quantization_config=config,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")

# 3. Verify quality
prompt = "The capital of France is"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0]))

# 4. Save
model.save_pretrained("./llama-8b-hqq")
tokenizer.save_pretrained("./llama-8b-hqq")

Workflow 2: Optimize for inference speed

from hqq.core.quantize import HQQLinear
from transformers import AutoModelForCausalLM, HqqConfig

# 1. Quantize with optimal backend
config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B",
    quantization_config=config,
    device_map="auto"
)

# 2. Set fast backend
HQQLinear.set_backend("marlin")  # or "torchao_int4"

# 3. Compile for additional speedup
import torch
model = torch.compile(model)

# 4. Benchmark
import time
inputs = tokenizer("Hello", return_tensors="pt").to(model.device)
start = time.time()
for _ in range(10):
    model.generate(**inputs, max_new_tokens=100)
print(f"Avg time: {(time.time() - start) / 10:.2f}s")

Best practices

  1. Start with 4-bit: Best quality/size tradeoff for most models
  2. Use group_size=64: Good balance; smaller for extreme quantization
  3. Choose backend wisely: Marlin for 4-bit Ampere+, TorchAO for flexibility
  4. Verify quality: Always test generation quality after quantization
  5. Mixed precision: Keep attention at higher precision, compress MLP more
  6. PEFT training: Use LoRA r=16-32 for good fine-tuning results

Common issues

Out of memory during quantization:

# Quantize layer-by-layer
from hqq.models.hf.base import AutoHQQHFModel

model = AutoHQQHFModel.from_pretrained(
    "meta-llama/Llama-3.1-8B",
    quantization_config=config,
    device_map="sequential"  # Load layers sequentially
)

Slow inference:

# Switch to optimized backend
from hqq.core.quantize import HQQLinear
HQQLinear.set_backend("marlin")  # Requires Ampere+ GPU

# Or compile
model = torch.compile(model, mode="reduce-overhead")

Poor quality at 2-bit:

# Use smaller group size
config = BaseQuantizeConfig(
    nbits=2,
    group_size=16,  # Smaller groups help at low bits
    axis=1
)

References

Resources