Modal Serverless GPU
Comprehensive guide to running ML workloads on Modal's serverless GPU cloud platform.
When to use Modal
Use Modal when:
- Running GPU-intensive ML workloads without managing infrastructure
- Deploying ML models as auto-scaling APIs
- Running batch processing jobs (training, inference, data processing)
- Need pay-per-second GPU pricing without idle costs
- Prototyping ML applications quickly
- Running scheduled jobs (cron-like workloads)
Key features:
- Serverless GPUs: T4, L4, A10G, L40S, A100, H100, H200, B200 on-demand
- Python-native: Define infrastructure in Python code, no YAML
- Auto-scaling: Scale to zero, scale to 100+ GPUs instantly
- Sub-second cold starts: Rust-based infrastructure for fast container launches
- Container caching: Image layers cached for rapid iteration
- Web endpoints: Deploy functions as REST APIs with zero-downtime updates
Use alternatives instead:
- RunPod: For longer-running pods with persistent state
- Lambda Labs: For reserved GPU instances
- SkyPilot: For multi-cloud orchestration and cost optimization
- Kubernetes: For complex multi-service architectures
Quick start
Installation
pip install modal
modal setup # Opens browser for authentication
Hello World with GPU
import modal
app = modal.App("hello-gpu")
@app.function(gpu="T4")
def gpu_info():
import subprocess
return subprocess.run(["nvidia-smi"], capture_output=True, text=True).stdout
@app.local_entrypoint()
def main():
print(gpu_info.remote())
Run: modal run hello_gpu.py
Basic inference endpoint
import modal
app = modal.App("text-generation")
image = modal.Image.debian_slim().pip_install("transformers", "torch", "accelerate")
@app.cls(gpu="A10G", image=image)
class TextGenerator:
@modal.enter()
def load_model(self):
from transformers import pipeline
self.pipe = pipeline("text-generation", model="gpt2", device=0)
@modal.method()
def generate(self, prompt: str) -> str:
return self.pipe(prompt, max_length=100)[0]["generated_text"]
@app.local_entrypoint()
def main():
print(TextGenerator().generate.remote("Hello, world"))
Core concepts
Key components
| Component |
Purpose |
App |
Container for functions and resources |
Function |
Serverless function with compute specs |
Cls |
Class-based functions with lifecycle hooks |
Image |
Container image definition |
Volume |
Persistent storage for models/data |
Secret |
Secure credential storage |
Execution modes
| Command |
Description |
modal run script.py |
Execute and exit |
modal serve script.py |
Development with live reload |
modal deploy script.py |
Persistent cloud deployment |
GPU configuration
Available GPUs
| GPU |
VRAM |
Best For |
T4 |
16GB |
Budget inference, small models |
L4 |
24GB |
Inference, Ada Lovelace arch |
A10G |
24GB |
Training/inference, 3.3x faster than T4 |
L40S |
48GB |
Recommended for inference (best cost/perf) |
A100-40GB |
40GB |
Large model training |
A100-80GB |
80GB |
Very large models |
H100 |
80GB |
Fastest, FP8 + Transformer Engine |
H200 |
141GB |
Auto-upgrade from H100, 4.8TB/s bandwidth |
B200 |
Latest |
Blackwell architecture |
GPU specification patterns
# Single GPU
@app.function(gpu="A100")
# Specific memory variant
@app.function(gpu="A100-80GB")
# Multiple GPUs (up to 8)
@app.function(gpu="H100:4")
# GPU with fallbacks
@app.function(gpu=["H100", "A100", "L40S"])
# Any available GPU
@app.function(gpu="any")
Container images
# Basic image with pip
image = modal.Image.debian_slim(python_version="3.11").pip_install(
"torch==2.1.0", "transformers==4.36.0", "accelerate"
)
# From CUDA base
image = modal.Image.from_registry(
"nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04",
add_python="3.11"
).pip_install("torch", "transformers")
# With system packages
image = modal.Image.debian_slim().apt_install("git", "ffmpeg").pip_install("whisper")
Persistent storage
volume = modal.Volume.from_name("model-cache", create_if_missing=True)
@app.function(gpu="A10G", volumes={"/models": volume})
def load_model():
import os
model_path = "/models/llama-7b"
if not os.path.exists(model_path):
model = download_model()
model.save_pretrained(model_path)
volume.commit() # Persist changes
return load_from_path(model_path)
Web endpoints
FastAPI endpoint decorator
@app.function()
@modal.fastapi_endpoint(method="POST")
def predict(text: str) -> dict:
return {"result": model.predict(text)}
Full ASGI app
from fastapi import FastAPI
web_app = FastAPI()
@web_app.post("/predict")
async def predict(text: str):
return {"result": await model.predict.remote.aio(text)}
@app.function()
@modal.asgi_app()
def fastapi_app():
return web_app
Web endpoint types
| Decorator |
Use Case |
@modal.fastapi_endpoint() |
Simple function → API |
@modal.asgi_app() |
Full FastAPI/Starlette apps |
@modal.wsgi_app() |
Django/Flask apps |
@modal.web_server(port) |
Arbitrary HTTP servers |
Dynamic batching
@app.function()
@modal.batched(max_batch_size=32, wait_ms=100)
async def batch_predict(inputs: list[str]) -> list[dict]:
# Inputs automatically batched
return model.batch_predict(inputs)
Secrets management
# Create secret
modal secret create huggingface HF_TOKEN=hf_xxx
@app.function(secrets=[modal.Secret.from_name("huggingface")])
def download_model():
import os
token = os.environ["HF_TOKEN"]
Scheduling
@app.function(schedule=modal.Cron("0 0 * * *")) # Daily midnight
def daily_job():
pass
@app.function(schedule=modal.Period(hours=1))
def hourly_job():
pass
Performance optimization
Cold start mitigation
@app.function(
container_idle_timeout=300, # Keep warm 5 min
allow_concurrent_inputs=10, # Handle concurrent requests
)
def inference():
pass
Model loading best practices
@app.cls(gpu="A100")
class Model:
@modal.enter() # Run once at container start
def load(self):
self.model = load_model() # Load during warm-up
@modal.method()
def predict(self, x):
return self.model(x)
Parallel processing
@app.function()
def process_item(item):
return expensive_computation(item)
@app.function()
def run_parallel():
items = list(range(1000))
# Fan out to parallel containers
results = list(process_item.map(items))
return results
Common configuration
@app.function(
gpu="A100",
memory=32768, # 32GB RAM
cpu=4, # 4 CPU cores
timeout=3600, # 1 hour max
container_idle_timeout=120,# Keep warm 2 min
retries=3, # Retry on failure
concurrency_limit=10, # Max concurrent containers
)
def my_function():
pass
Debugging
# Test locally
if __name__ == "__main__":
result = my_function.local()
# View logs
# modal app logs my-app
Common issues
| Issue |
Solution |
| Cold start latency |
Increase container_idle_timeout, use @modal.enter() |
| GPU OOM |
Use larger GPU (A100-80GB), enable gradient checkpointing |
| Image build fails |
Pin dependency versions, check CUDA compatibility |
| Timeout errors |
Increase timeout, add checkpointing |
References
Resources