Claude Code Plugins

Community-maintained marketplace

Feedback

Merge multiple fine-tuned models using mergekit to combine capabilities without retraining. Use when creating specialized models by blending domain-specific expertise (math + coding + chat), improving performance beyond single models, or experimenting rapidly with model variants. Covers SLERP, TIES-Merging, DARE, Task Arithmetic, linear merging, and production deployment strategies.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name model-merging
description Merge multiple fine-tuned models using mergekit to combine capabilities without retraining. Use when creating specialized models by blending domain-specific expertise (math + coding + chat), improving performance beyond single models, or experimenting rapidly with model variants. Covers SLERP, TIES-Merging, DARE, Task Arithmetic, linear merging, and production deployment strategies.

Model Merging: Combining Pre-trained Models

When to Use This Skill

Use Model Merging when you need to:

  • Combine capabilities from multiple fine-tuned models without retraining
  • Create specialized models by blending domain-specific expertise (math + coding + chat)
  • Improve performance beyond single models (often +5-10% on benchmarks)
  • Reduce training costs - no GPUs needed, merges run on CPU
  • Experiment rapidly - create new model variants in minutes, not days
  • Preserve multiple skills - merge without catastrophic forgetting

Success Stories: Marcoro14-7B-slerp (best on Open LLM Leaderboard 02/2024), many top HuggingFace models use merging

Tools: mergekit (Arcee AI), LazyMergekit, Model Soup

Installation

# Install mergekit
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit
pip install -e .

# Or via pip
pip install mergekit

# Optional: Transformer library
pip install transformers torch

Quick Start

Simple Linear Merge

# config.yml - Merge two models with equal weights
merge_method: linear
models:
  - model: mistralai/Mistral-7B-v0.1
    parameters:
      weight: 0.5
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.5
dtype: bfloat16
# Run merge
mergekit-yaml config.yml ./merged-model --cuda

# Use merged model
python -m transformers.models.auto --model_name_or_path ./merged-model

SLERP Merge (Best for 2 Models)

# config.yml - Spherical interpolation
merge_method: slerp
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
parameters:
  t: 0.5  # Interpolation factor (0=model1, 1=model2)
dtype: bfloat16

Core Concepts

1. Merge Methods

Linear (Model Soup)

  • Simple weighted average of parameters
  • Fast, works well for similar models
  • Can merge 2+ models
merged_weights = w1 * model1_weights + w2 * model2_weights + w3 * model3_weights
# where w1 + w2 + w3 = 1

SLERP (Spherical Linear Interpolation)

  • Interpolates along sphere in weight space
  • Preserves magnitude of weight vectors
  • Best for merging 2 models
  • Smoother than linear
# SLERP formula
merged = (sin((1-t)*θ) / sin(θ)) * model1 + (sin(t*θ) / sin(θ)) * model2
# where θ = arccos(dot(model1, model2))
# t ∈ [0, 1]

Task Arithmetic

  • Extract "task vectors" (fine-tuned - base)
  • Combine task vectors, add to base
  • Good for merging multiple specialized models
# Task vector
task_vector = finetuned_model - base_model

# Merge multiple task vectors
merged = base_model + α₁*task_vector₁ + α₂*task_vector₂

TIES-Merging

  • Task arithmetic + sparsification
  • Resolves sign conflicts in parameters
  • Best for merging many task-specific models

DARE (Drop And REscale)

  • Randomly drops fine-tuned parameters
  • Rescales remaining parameters
  • Reduces redundancy, maintains performance

2. Configuration Structure

# Basic structure
merge_method: <method>  # linear, slerp, ties, dare_ties, task_arithmetic
base_model: <path>      # Optional: base model for task arithmetic

models:
  - model: <path/to/model1>
    parameters:
      weight: <float>   # Merge weight
      density: <float>  # For TIES/DARE

  - model: <path/to/model2>
    parameters:
      weight: <float>

parameters:
  # Method-specific parameters

dtype: <dtype>  # bfloat16, float16, float32

# Optional
slices:  # Layer-wise merging
tokenizer:  # Tokenizer configuration

Merge Methods Guide

Linear Merge

Best for: Simple model combinations, equal weighting

merge_method: linear
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      weight: 0.4
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.3
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      weight: 0.3
dtype: bfloat16

SLERP Merge

Best for: Two models, smooth interpolation

merge_method: slerp
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
parameters:
  t: 0.5  # 0.0 = first model, 1.0 = second model
dtype: bfloat16

Layer-specific SLERP:

merge_method: slerp
slices:
  - sources:
      - model: model_a
        layer_range: [0, 32]
      - model: model_b
        layer_range: [0, 32]
parameters:
  t:
    - filter: self_attn    # Attention layers
      value: 0.3
    - filter: mlp          # MLP layers
      value: 0.7
    - value: 0.5           # Default for other layers
dtype: bfloat16

Task Arithmetic

Best for: Combining specialized skills

merge_method: task_arithmetic
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1  # Math
    parameters:
      weight: 0.5
  - model: teknium/OpenHermes-2.5-Mistral-7B  # Chat
    parameters:
      weight: 0.3
  - model: ajibawa-2023/Code-Mistral-7B  # Code
    parameters:
      weight: 0.2
dtype: bfloat16

TIES-Merging

Best for: Many models, resolving conflicts

merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      density: 0.5  # Keep top 50% of parameters
      weight: 1.0
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      density: 0.5
      weight: 1.0
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      density: 0.5
      weight: 1.0
parameters:
  normalize: true
dtype: bfloat16

DARE Merge

Best for: Reducing redundancy

merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      density: 0.5    # Drop 50% of deltas
      weight: 0.6
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      density: 0.5
      weight: 0.4
parameters:
  int8_mask: true  # Use int8 for masks (saves memory)
dtype: bfloat16

Advanced Patterns

Layer-wise Merging

# Different models for different layers
merge_method: passthrough
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 16]   # First half
  - sources:
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [16, 32]  # Second half
dtype: bfloat16

MoE from Merged Models

# Create Mixture of Experts
merge_method: moe
base_model: mistralai/Mistral-7B-v0.1
experts:
  - source_model: WizardLM/WizardMath-7B-V1.1
    positive_prompts:
      - "math"
      - "calculate"
  - source_model: teknium/OpenHermes-2.5-Mistral-7B
    positive_prompts:
      - "chat"
      - "conversation"
  - source_model: ajibawa-2023/Code-Mistral-7B
    positive_prompts:
      - "code"
      - "python"
dtype: bfloat16

Tokenizer Merging

merge_method: linear
models:
  - model: mistralai/Mistral-7B-v0.1
  - model: custom/specialized-model

tokenizer:
  source: "union"  # Combine vocabularies from both models
  tokens:
    <|special_token|>:
      source: "custom/specialized-model"

Best Practices

1. Model Compatibility

# ✅ Good: Same architecture
models = [
    "mistralai/Mistral-7B-v0.1",
    "teknium/OpenHermes-2.5-Mistral-7B",  # Both Mistral 7B
]

# ❌ Bad: Different architectures
models = [
    "meta-llama/Llama-2-7b-hf",  # Llama
    "mistralai/Mistral-7B-v0.1",  # Mistral (incompatible!)
]

2. Weight Selection

# ✅ Good: Weights sum to 1.0
models:
  - model: model_a
    parameters:
      weight: 0.6
  - model: model_b
    parameters:
      weight: 0.4  # 0.6 + 0.4 = 1.0

# ⚠️  Acceptable: Weights don't sum to 1 (for task arithmetic)
models:
  - model: model_a
    parameters:
      weight: 0.8
  - model: model_b
    parameters:
      weight: 0.8  # May boost performance

3. Method Selection

# Choose merge method based on use case:

# 2 models, smooth blend → SLERP
merge_method = "slerp"

# 3+ models, simple average → Linear
merge_method = "linear"

# Multiple task-specific models → Task Arithmetic or TIES
merge_method = "ties"

# Want to reduce redundancy → DARE
merge_method = "dare_ties"

4. Density Tuning (TIES/DARE)

# Start conservative (keep more parameters)
parameters:
  density: 0.8  # Keep 80%

# If performance good, increase sparsity
parameters:
  density: 0.5  # Keep 50%

# If performance degrades, reduce sparsity
parameters:
  density: 0.9  # Keep 90%

5. Layer-specific Merging

# Preserve base model's beginning and end
merge_method: passthrough
slices:
  - sources:
      - model: base_model
        layer_range: [0, 2]     # Keep first layers
  - sources:
      - model: merged_middle    # Merge middle layers
        layer_range: [2, 30]
  - sources:
      - model: base_model
        layer_range: [30, 32]   # Keep last layers

Evaluation & Testing

Benchmark Merged Models

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")

# Test on various tasks
test_prompts = {
    "math": "Calculate: 25 * 17 =",
    "code": "Write a Python function to reverse a string:",
    "chat": "What is the capital of France?",
}

for task, prompt in test_prompts.items():
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    print(f"{task}: {tokenizer.decode(outputs[0])}")

Common Benchmarks

  • Open LLM Leaderboard: General capabilities
  • MT-Bench: Multi-turn conversation
  • MMLU: Multitask accuracy
  • HumanEval: Code generation
  • GSM8K: Math reasoning

Production Deployment

Save and Upload

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")

# Upload to HuggingFace Hub
model.push_to_hub("username/my-merged-model")
tokenizer.push_to_hub("username/my-merged-model")

Quantize Merged Model

# Quantize with GGUF
python convert.py ./merged-model --outtype f16 --outfile merged-model.gguf

# Quantize with GPTQ
python quantize_gptq.py ./merged-model --bits 4 --group_size 128

Common Pitfalls

❌ Pitfall 1: Merging Incompatible Models

# Wrong: Different architectures
models:
  - model: meta-llama/Llama-2-7b  # Llama architecture
  - model: mistralai/Mistral-7B   # Mistral architecture

Fix: Only merge models with same architecture

❌ Pitfall 2: Over-weighting One Model

# Suboptimal: One model dominates
models:
  - model: model_a
    parameters:
      weight: 0.95  # Too high
  - model: model_b
    parameters:
      weight: 0.05  # Too low

Fix: Use more balanced weights (0.3-0.7 range)

❌ Pitfall 3: Not Evaluating

# Wrong: Merge and deploy without testing
mergekit-yaml config.yml ./merged-model
# Deploy immediately (risky!)

Fix: Always benchmark before deploying

Resources

See Also

  • references/methods.md - Deep dive into merge algorithms
  • references/examples.md - Real-world merge configurations
  • references/evaluation.md - Benchmarking and testing strategies