| name | nnsight-remote-interpretability |
| description | Provides guidance for interpreting and manipulating neural network internals using nnsight with optional NDIF remote execution. Use when needing to run interpretability experiments on massive models (70B+) without local GPU resources, or when working with any PyTorch architecture. |
| version | 1.0.0 |
| author | Orchestra Research |
| license | MIT |
| tags | nnsight, NDIF, Remote Execution, Mechanistic Interpretability, Model Internals |
| dependencies | nnsight>=0.5.0, torch>=2.0.0 |
nnsight: Transparent Access to Neural Network Internals
nnsight (/ɛn.saɪt/) enables researchers to interpret and manipulate the internals of any PyTorch model, with the unique capability of running the same code locally on small models or remotely on massive models (70B+) via NDIF.
GitHub: ndif-team/nnsight (730+ stars) Paper: NNsight and NDIF: Democratizing Access to Foundation Model Internals (ICLR 2025)
Key Value Proposition
Write once, run anywhere: The same interpretability code works on GPT-2 locally or Llama-3.1-405B remotely. Just toggle remote=True.
# Local execution (small model)
with model.trace("Hello world"):
hidden = model.transformer.h[5].output[0].save()
# Remote execution (massive model) - same code!
with model.trace("Hello world", remote=True):
hidden = model.model.layers[40].output[0].save()
When to Use nnsight
Use nnsight when you need to:
- Run interpretability experiments on models too large for local GPUs (70B, 405B)
- Work with any PyTorch architecture (transformers, Mamba, custom models)
- Perform multi-token generation interventions
- Share activations between different prompts
- Access full model internals without reimplementation
Consider alternatives when:
- You want consistent API across models → Use TransformerLens
- You need declarative, shareable interventions → Use pyvene
- You're training SAEs → Use SAELens
- You only work with small models locally → TransformerLens may be simpler
Installation
# Basic installation
pip install nnsight
# For vLLM support
pip install "nnsight[vllm]"
For remote NDIF execution, sign up at login.ndif.us for an API key.
Core Concepts
LanguageModel Wrapper
from nnsight import LanguageModel
# Load model (uses HuggingFace under the hood)
model = LanguageModel("openai-community/gpt2", device_map="auto")
# For larger models
model = LanguageModel("meta-llama/Llama-3.1-8B", device_map="auto")
Tracing Context
The trace context manager enables deferred execution - operations are collected into a computation graph:
from nnsight import LanguageModel
model = LanguageModel("gpt2", device_map="auto")
with model.trace("The Eiffel Tower is in") as tracer:
# Access any module's output
hidden_states = model.transformer.h[5].output[0].save()
# Access attention patterns
attn = model.transformer.h[5].attn.attn_dropout.input[0][0].save()
# Modify activations
model.transformer.h[8].output[0][:] = 0 # Zero out layer 8
# Get final output
logits = model.output.save()
# After context exits, access saved values
print(hidden_states.shape) # [batch, seq, hidden]
Proxy Objects
Inside trace, module accesses return Proxy objects that record operations:
with model.trace("Hello"):
# These are all Proxy objects - operations are deferred
h5_out = model.transformer.h[5].output[0] # Proxy
h5_mean = h5_out.mean(dim=-1) # Proxy
h5_saved = h5_mean.save() # Save for later access
Workflow 1: Activation Analysis
Step-by-Step
from nnsight import LanguageModel
import torch
model = LanguageModel("gpt2", device_map="auto")
prompt = "The capital of France is"
with model.trace(prompt) as tracer:
# 1. Collect activations from multiple layers
layer_outputs = []
for i in range(12): # GPT-2 has 12 layers
layer_out = model.transformer.h[i].output[0].save()
layer_outputs.append(layer_out)
# 2. Get attention patterns
attn_patterns = []
for i in range(12):
# Access attention weights (after softmax)
attn = model.transformer.h[i].attn.attn_dropout.input[0][0].save()
attn_patterns.append(attn)
# 3. Get final logits
logits = model.output.save()
# 4. Analyze outside context
for i, layer_out in enumerate(layer_outputs):
print(f"Layer {i} output shape: {layer_out.shape}")
print(f"Layer {i} norm: {layer_out.norm().item():.3f}")
# 5. Find top predictions
probs = torch.softmax(logits[0, -1], dim=-1)
top_tokens = probs.topk(5)
for token, prob in zip(top_tokens.indices, top_tokens.values):
print(f"{model.tokenizer.decode(token)}: {prob.item():.3f}")
Checklist
- Load model with LanguageModel wrapper
- Use trace context for operations
- Call
.save()on values you need after context - Access saved values outside context
- Use
.shape,.norm(), etc. for analysis
Workflow 2: Activation Patching
Step-by-Step
from nnsight import LanguageModel
import torch
model = LanguageModel("gpt2", device_map="auto")
clean_prompt = "The Eiffel Tower is in"
corrupted_prompt = "The Colosseum is in"
# 1. Get clean activations
with model.trace(clean_prompt) as tracer:
clean_hidden = model.transformer.h[8].output[0].save()
# 2. Patch clean into corrupted run
with model.trace(corrupted_prompt) as tracer:
# Replace layer 8 output with clean activations
model.transformer.h[8].output[0][:] = clean_hidden
patched_logits = model.output.save()
# 3. Compare predictions
paris_token = model.tokenizer.encode(" Paris")[0]
rome_token = model.tokenizer.encode(" Rome")[0]
patched_probs = torch.softmax(patched_logits[0, -1], dim=-1)
print(f"Paris prob: {patched_probs[paris_token].item():.3f}")
print(f"Rome prob: {patched_probs[rome_token].item():.3f}")
Systematic Patching Sweep
def patch_layer_position(layer, position, clean_cache, corrupted_prompt):
"""Patch single layer/position from clean to corrupted."""
with model.trace(corrupted_prompt) as tracer:
# Get current activation
current = model.transformer.h[layer].output[0]
# Patch only specific position
current[:, position, :] = clean_cache[layer][:, position, :]
logits = model.output.save()
return logits
# Sweep over all layers and positions
results = torch.zeros(12, seq_len)
for layer in range(12):
for pos in range(seq_len):
logits = patch_layer_position(layer, pos, clean_hidden, corrupted)
results[layer, pos] = compute_metric(logits)
Workflow 3: Remote Execution with NDIF
Run the same experiments on massive models without local GPUs.
Step-by-Step
from nnsight import LanguageModel
# 1. Load large model (will run remotely)
model = LanguageModel("meta-llama/Llama-3.1-70B")
# 2. Same code, just add remote=True
with model.trace("The meaning of life is", remote=True) as tracer:
# Access internals of 70B model!
layer_40_out = model.model.layers[40].output[0].save()
logits = model.output.save()
# 3. Results returned from NDIF
print(f"Layer 40 shape: {layer_40_out.shape}")
# 4. Generation with interventions
with model.trace(remote=True) as tracer:
with tracer.invoke("What is 2+2?"):
# Intervene during generation
model.model.layers[20].output[0][:, -1, :] *= 1.5
output = model.generate(max_new_tokens=50)
NDIF Setup
- Sign up at login.ndif.us
- Get API key
- Set environment variable or pass to nnsight:
import os
os.environ["NDIF_API_KEY"] = "your_key"
# Or configure directly
from nnsight import CONFIG
CONFIG.API_KEY = "your_key"
Available Models on NDIF
- Llama-3.1-8B, 70B, 405B
- DeepSeek-R1 models
- Various open-weight models (check ndif.us for current list)
Workflow 4: Cross-Prompt Activation Sharing
Share activations between different inputs in a single trace.
from nnsight import LanguageModel
model = LanguageModel("gpt2", device_map="auto")
with model.trace() as tracer:
# First prompt
with tracer.invoke("The cat sat on the"):
cat_hidden = model.transformer.h[6].output[0].save()
# Second prompt - inject cat's activations
with tracer.invoke("The dog ran through the"):
# Replace with cat's activations at layer 6
model.transformer.h[6].output[0][:] = cat_hidden
dog_with_cat = model.output.save()
# The dog prompt now has cat's internal representations
Workflow 5: Gradient-Based Analysis
Access gradients during backward pass.
from nnsight import LanguageModel
import torch
model = LanguageModel("gpt2", device_map="auto")
with model.trace("The quick brown fox") as tracer:
# Save activations and enable gradient
hidden = model.transformer.h[5].output[0].save()
hidden.retain_grad()
logits = model.output
# Compute loss on specific token
target_token = model.tokenizer.encode(" jumps")[0]
loss = -logits[0, -1, target_token]
# Backward pass
loss.backward()
# Access gradients
grad = hidden.grad
print(f"Gradient shape: {grad.shape}")
print(f"Gradient norm: {grad.norm().item():.3f}")
Note: Gradient access not supported for vLLM or remote execution.
Common Issues & Solutions
Issue: Module path differs between models
# GPT-2 structure
model.transformer.h[5].output[0]
# LLaMA structure
model.model.layers[5].output[0]
# Solution: Check model structure
print(model._model) # See actual module names
Issue: Forgetting to save
# WRONG: Value not accessible outside trace
with model.trace("Hello"):
hidden = model.transformer.h[5].output[0] # Not saved!
print(hidden) # Error or wrong value
# RIGHT: Call .save()
with model.trace("Hello"):
hidden = model.transformer.h[5].output[0].save()
print(hidden) # Works!
Issue: Remote timeout
# For long operations, increase timeout
with model.trace("prompt", remote=True, timeout=300) as tracer:
# Long operation...
Issue: Memory with many saved activations
# Only save what you need
with model.trace("prompt"):
# Don't save everything
for i in range(100):
model.transformer.h[i].output[0].save() # Memory heavy!
# Better: save specific layers
key_layers = [0, 5, 11]
for i in key_layers:
model.transformer.h[i].output[0].save()
Issue: vLLM gradient limitation
# vLLM doesn't support gradients
# Use standard execution for gradient analysis
model = LanguageModel("gpt2", device_map="auto") # Not vLLM
Key API Reference
| Method/Property | Purpose |
|---|---|
model.trace(prompt, remote=False) |
Start tracing context |
proxy.save() |
Save value for access after trace |
proxy[:] |
Slice/index proxy (assignment patches) |
tracer.invoke(prompt) |
Add prompt within trace |
model.generate(...) |
Generate with interventions |
model.output |
Final model output logits |
model._model |
Underlying HuggingFace model |
Comparison with Other Tools
| Feature | nnsight | TransformerLens | pyvene |
|---|---|---|---|
| Any architecture | Yes | Transformers only | Yes |
| Remote execution | Yes (NDIF) | No | No |
| Consistent API | No | Yes | Yes |
| Deferred execution | Yes | No | No |
| HuggingFace native | Yes | Reimplemented | Yes |
| Shareable configs | No | No | Yes |
Reference Documentation
For detailed API documentation, tutorials, and advanced usage, see the references/ folder:
| File | Contents |
|---|---|
| references/README.md | Overview and quick start guide |
| references/api.md | Complete API reference for LanguageModel, tracing, proxy objects |
| references/tutorials.md | Step-by-step tutorials for local and remote interpretability |
External Resources
Tutorials
Official Documentation
Papers
- NNsight and NDIF Paper - Fiotto-Kaufman et al. (ICLR 2025)
Architecture Support
nnsight works with any PyTorch model:
- Transformers: GPT-2, LLaMA, Mistral, etc.
- State Space Models: Mamba
- Vision Models: ViT, CLIP
- Custom architectures: Any nn.Module
The key is knowing the module structure to access the right components.