| name | qdrant-vector-search |
| description | High-performance vector similarity search engine for RAG and semantic search. Use when building production RAG systems requiring fast nearest neighbor search, hybrid search with filtering, or scalable vector storage with Rust-powered performance. |
| version | 1.0.0 |
| author | Orchestra Research |
| license | MIT |
| tags | RAG, Vector Search, Qdrant, Semantic Search, Embeddings, Similarity Search, HNSW, Production, Distributed |
| dependencies | qdrant-client>=1.12.0 |
Qdrant - Vector Similarity Search Engine
High-performance vector database written in Rust for production RAG and semantic search.
When to use Qdrant
Use Qdrant when:
- Building production RAG systems requiring low latency
- Need hybrid search (vectors + metadata filtering)
- Require horizontal scaling with sharding/replication
- Want on-premise deployment with full data control
- Need multi-vector storage per record (dense + sparse)
- Building real-time recommendation systems
Key features:
- Rust-powered: Memory-safe, high performance
- Rich filtering: Filter by any payload field during search
- Multiple vectors: Dense, sparse, multi-dense per point
- Quantization: Scalar, product, binary for memory efficiency
- Distributed: Raft consensus, sharding, replication
- REST + gRPC: Both APIs with full feature parity
Use alternatives instead:
- Chroma: Simpler setup, embedded use cases
- FAISS: Maximum raw speed, research/batch processing
- Pinecone: Fully managed, zero ops preferred
- Weaviate: GraphQL preference, built-in vectorizers
Quick start
Installation
# Python client
pip install qdrant-client
# Docker (recommended for development)
docker run -p 6333:6333 -p 6334:6334 qdrant/qdrant
# Docker with persistent storage
docker run -p 6333:6333 -p 6334:6334 \
-v $(pwd)/qdrant_storage:/qdrant/storage \
qdrant/qdrant
Basic usage
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
# Connect to Qdrant
client = QdrantClient(host="localhost", port=6333)
# Create collection
client.create_collection(
collection_name="documents",
vectors_config=VectorParams(size=384, distance=Distance.COSINE)
)
# Insert vectors with payload
client.upsert(
collection_name="documents",
points=[
PointStruct(
id=1,
vector=[0.1, 0.2, ...], # 384-dim vector
payload={"title": "Doc 1", "category": "tech"}
),
PointStruct(
id=2,
vector=[0.3, 0.4, ...],
payload={"title": "Doc 2", "category": "science"}
)
]
)
# Search with filtering
results = client.search(
collection_name="documents",
query_vector=[0.15, 0.25, ...],
query_filter={
"must": [{"key": "category", "match": {"value": "tech"}}]
},
limit=10
)
for point in results:
print(f"ID: {point.id}, Score: {point.score}, Payload: {point.payload}")
Core concepts
Points - Basic data unit
from qdrant_client.models import PointStruct
# Point = ID + Vector(s) + Payload
point = PointStruct(
id=123, # Integer or UUID string
vector=[0.1, 0.2, 0.3, ...], # Dense vector
payload={ # Arbitrary JSON metadata
"title": "Document title",
"category": "tech",
"timestamp": 1699900000,
"tags": ["python", "ml"]
}
)
# Batch upsert (recommended)
client.upsert(
collection_name="documents",
points=[point1, point2, point3],
wait=True # Wait for indexing
)
Collections - Vector containers
from qdrant_client.models import VectorParams, Distance, HnswConfigDiff
# Create with HNSW configuration
client.create_collection(
collection_name="documents",
vectors_config=VectorParams(
size=384, # Vector dimensions
distance=Distance.COSINE # COSINE, EUCLID, DOT, MANHATTAN
),
hnsw_config=HnswConfigDiff(
m=16, # Connections per node (default 16)
ef_construct=100, # Build-time accuracy (default 100)
full_scan_threshold=10000 # Switch to brute force below this
),
on_disk_payload=True # Store payload on disk
)
# Collection info
info = client.get_collection("documents")
print(f"Points: {info.points_count}, Vectors: {info.vectors_count}")
Distance metrics
| Metric | Use Case | Range |
|---|---|---|
COSINE |
Text embeddings, normalized vectors | 0 to 2 |
EUCLID |
Spatial data, image features | 0 to ∞ |
DOT |
Recommendations, unnormalized | -∞ to ∞ |
MANHATTAN |
Sparse features, discrete data | 0 to ∞ |
Search operations
Basic search
# Simple nearest neighbor search
results = client.search(
collection_name="documents",
query_vector=[0.1, 0.2, ...],
limit=10,
with_payload=True,
with_vectors=False # Don't return vectors (faster)
)
Filtered search
from qdrant_client.models import Filter, FieldCondition, MatchValue, Range
# Complex filtering
results = client.search(
collection_name="documents",
query_vector=query_embedding,
query_filter=Filter(
must=[
FieldCondition(key="category", match=MatchValue(value="tech")),
FieldCondition(key="timestamp", range=Range(gte=1699000000))
],
must_not=[
FieldCondition(key="status", match=MatchValue(value="archived"))
]
),
limit=10
)
# Shorthand filter syntax
results = client.search(
collection_name="documents",
query_vector=query_embedding,
query_filter={
"must": [
{"key": "category", "match": {"value": "tech"}},
{"key": "price", "range": {"gte": 10, "lte": 100}}
]
},
limit=10
)
Batch search
from qdrant_client.models import SearchRequest
# Multiple queries in one request
results = client.search_batch(
collection_name="documents",
requests=[
SearchRequest(vector=[0.1, ...], limit=5),
SearchRequest(vector=[0.2, ...], limit=5, filter={"must": [...]}),
SearchRequest(vector=[0.3, ...], limit=10)
]
)
RAG integration
With sentence-transformers
from sentence_transformers import SentenceTransformer
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance, PointStruct
# Initialize
encoder = SentenceTransformer("all-MiniLM-L6-v2")
client = QdrantClient(host="localhost", port=6333)
# Create collection
client.create_collection(
collection_name="knowledge_base",
vectors_config=VectorParams(size=384, distance=Distance.COSINE)
)
# Index documents
documents = [
{"id": 1, "text": "Python is a programming language", "source": "wiki"},
{"id": 2, "text": "Machine learning uses algorithms", "source": "textbook"},
]
points = [
PointStruct(
id=doc["id"],
vector=encoder.encode(doc["text"]).tolist(),
payload={"text": doc["text"], "source": doc["source"]}
)
for doc in documents
]
client.upsert(collection_name="knowledge_base", points=points)
# RAG retrieval
def retrieve(query: str, top_k: int = 5) -> list[dict]:
query_vector = encoder.encode(query).tolist()
results = client.search(
collection_name="knowledge_base",
query_vector=query_vector,
limit=top_k
)
return [{"text": r.payload["text"], "score": r.score} for r in results]
# Use in RAG pipeline
context = retrieve("What is Python?")
prompt = f"Context: {context}\n\nQuestion: What is Python?"
With LangChain
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
vectorstore = Qdrant.from_documents(documents, embeddings, url="http://localhost:6333", collection_name="docs")
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
With LlamaIndex
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
vector_store = QdrantVectorStore(client=client, collection_name="llama_docs")
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
query_engine = index.as_query_engine()
Multi-vector support
Named vectors (different embedding models)
from qdrant_client.models import VectorParams, Distance
# Collection with multiple vector types
client.create_collection(
collection_name="hybrid_search",
vectors_config={
"dense": VectorParams(size=384, distance=Distance.COSINE),
"sparse": VectorParams(size=30000, distance=Distance.DOT)
}
)
# Insert with named vectors
client.upsert(
collection_name="hybrid_search",
points=[
PointStruct(
id=1,
vector={
"dense": dense_embedding,
"sparse": sparse_embedding
},
payload={"text": "document text"}
)
]
)
# Search specific vector
results = client.search(
collection_name="hybrid_search",
query_vector=("dense", query_dense), # Specify which vector
limit=10
)
Sparse vectors (BM25, SPLADE)
from qdrant_client.models import SparseVectorParams, SparseIndexParams, SparseVector
# Collection with sparse vectors
client.create_collection(
collection_name="sparse_search",
vectors_config={},
sparse_vectors_config={"text": SparseVectorParams(index=SparseIndexParams(on_disk=False))}
)
# Insert sparse vector
client.upsert(
collection_name="sparse_search",
points=[PointStruct(id=1, vector={"text": SparseVector(indices=[1, 5, 100], values=[0.5, 0.8, 0.2])}, payload={"text": "document"})]
)
Quantization (memory optimization)
from qdrant_client.models import ScalarQuantization, ScalarQuantizationConfig, ScalarType
# Scalar quantization (4x memory reduction)
client.create_collection(
collection_name="quantized",
vectors_config=VectorParams(size=384, distance=Distance.COSINE),
quantization_config=ScalarQuantization(
scalar=ScalarQuantizationConfig(
type=ScalarType.INT8,
quantile=0.99, # Clip outliers
always_ram=True # Keep quantized in RAM
)
)
)
# Search with rescoring
results = client.search(
collection_name="quantized",
query_vector=query,
search_params={"quantization": {"rescore": True}}, # Rescore top results
limit=10
)
Payload indexing
from qdrant_client.models import PayloadSchemaType
# Create payload index for faster filtering
client.create_payload_index(
collection_name="documents",
field_name="category",
field_schema=PayloadSchemaType.KEYWORD
)
client.create_payload_index(
collection_name="documents",
field_name="timestamp",
field_schema=PayloadSchemaType.INTEGER
)
# Index types: KEYWORD, INTEGER, FLOAT, GEO, TEXT (full-text), BOOL
Production deployment
Qdrant Cloud
from qdrant_client import QdrantClient
# Connect to Qdrant Cloud
client = QdrantClient(
url="https://your-cluster.cloud.qdrant.io",
api_key="your-api-key"
)
Performance tuning
# Optimize for search speed (higher recall)
client.update_collection(
collection_name="documents",
hnsw_config=HnswConfigDiff(ef_construct=200, m=32)
)
# Optimize for indexing speed (bulk loads)
client.update_collection(
collection_name="documents",
optimizer_config={"indexing_threshold": 20000}
)
Best practices
- Batch operations - Use batch upsert/search for efficiency
- Payload indexing - Index fields used in filters
- Quantization - Enable for large collections (>1M vectors)
- Sharding - Use for collections >10M vectors
- On-disk storage - Enable
on_disk_payloadfor large payloads - Connection pooling - Reuse client instances
Common issues
Slow search with filters:
# Create payload index for filtered fields
client.create_payload_index(
collection_name="docs",
field_name="category",
field_schema=PayloadSchemaType.KEYWORD
)
Out of memory:
# Enable quantization and on-disk storage
client.create_collection(
collection_name="large_collection",
vectors_config=VectorParams(size=384, distance=Distance.COSINE),
quantization_config=ScalarQuantization(...),
on_disk_payload=True
)
Connection issues:
# Use timeout and retry
client = QdrantClient(
host="localhost",
port=6333,
timeout=30,
prefer_grpc=True # gRPC for better performance
)
References
- Advanced Usage - Distributed mode, hybrid search, recommendations
- Troubleshooting - Common issues, debugging, performance tuning
Resources
- GitHub: https://github.com/qdrant/qdrant (22k+ stars)
- Docs: https://qdrant.tech/documentation/
- Python Client: https://github.com/qdrant/qdrant-client
- Cloud: https://cloud.qdrant.io
- Version: 1.12.0+
- License: Apache 2.0