| name | ray-train |
| description | Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic scaling. Use when training massive models across multiple machines or running distributed hyperparameter sweeps. |
Ray Train - Distributed Training Orchestration
Quick start
Ray Train scales machine learning training from single GPU to multi-node clusters with minimal code changes.
Installation:
pip install -U "ray[train]"
Basic PyTorch training (single node):
import ray
from ray import train
from ray.train import ScalingConfig
from ray.train.torch import TorchTrainer
import torch
import torch.nn as nn
# Define training function
def train_func(config):
# Your normal PyTorch code
model = nn.Linear(10, 1)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# Prepare for distributed (Ray handles device placement)
model = train.torch.prepare_model(model)
for epoch in range(10):
# Your training loop
output = model(torch.randn(32, 10))
loss = output.sum()
loss.backward()
optimizer.step()
optimizer.zero_grad()
# Report metrics (logged automatically)
train.report({"loss": loss.item(), "epoch": epoch})
# Run distributed training
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(
num_workers=4, # 4 GPUs/workers
use_gpu=True
)
)
result = trainer.fit()
print(f"Final loss: {result.metrics['loss']}")
That's it! Ray handles:
- Distributed coordination
- GPU allocation
- Fault tolerance
- Checkpointing
- Metric aggregation
Common workflows
Workflow 1: Scale existing PyTorch code
Original single-GPU code:
model = MyModel().cuda()
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(epochs):
for batch in dataloader:
loss = model(batch)
loss.backward()
optimizer.step()
Ray Train version (scales to multi-GPU/multi-node):
from ray.train.torch import TorchTrainer
from ray import train
def train_func(config):
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
# Prepare for distributed (automatic device placement)
model = train.torch.prepare_model(model)
dataloader = train.torch.prepare_data_loader(dataloader)
for epoch in range(epochs):
for batch in dataloader:
loss = model(batch)
loss.backward()
optimizer.step()
# Report metrics
train.report({"loss": loss.item()})
# Scale to 8 GPUs
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=8, use_gpu=True)
)
trainer.fit()
Benefits: Same code runs on 1 GPU or 1000 GPUs
Workflow 2: HuggingFace Transformers integration
from ray.train.huggingface import TransformersTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
def train_func(config):
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
# Training arguments (HuggingFace API)
training_args = TrainingArguments(
output_dir="./output",
num_train_epochs=3,
per_device_train_batch_size=8,
learning_rate=2e-5,
)
# Ray automatically handles distributed training
from transformers import Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
)
trainer.train()
# Scale to multi-node (2 nodes × 8 GPUs = 16 workers)
trainer = TransformersTrainer(
train_func,
scaling_config=ScalingConfig(
num_workers=16,
use_gpu=True,
resources_per_worker={"GPU": 1}
)
)
result = trainer.fit()
Workflow 3: Hyperparameter tuning with Ray Tune
from ray import tune
from ray.train.torch import TorchTrainer
from ray.tune.schedulers import ASHAScheduler
def train_func(config):
# Use hyperparameters from config
lr = config["lr"]
batch_size = config["batch_size"]
model = MyModel()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
model = train.torch.prepare_model(model)
for epoch in range(10):
# Training loop
loss = train_epoch(model, optimizer, batch_size)
train.report({"loss": loss, "epoch": epoch})
# Define search space
param_space = {
"lr": tune.loguniform(1e-5, 1e-2),
"batch_size": tune.choice([16, 32, 64, 128])
}
# Run 20 trials with early stopping
tuner = tune.Tuner(
TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=4, use_gpu=True)
),
param_space=param_space,
tune_config=tune.TuneConfig(
num_samples=20,
scheduler=ASHAScheduler(metric="loss", mode="min")
)
)
results = tuner.fit()
best = results.get_best_result(metric="loss", mode="min")
print(f"Best hyperparameters: {best.config}")
Result: Distributed hyperparameter search across cluster
Workflow 4: Checkpointing and fault tolerance
from ray import train
from ray.train import Checkpoint
def train_func(config):
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
# Try to resume from checkpoint
checkpoint = train.get_checkpoint()
if checkpoint:
with checkpoint.as_directory() as checkpoint_dir:
state = torch.load(f"{checkpoint_dir}/model.pt")
model.load_state_dict(state["model"])
optimizer.load_state_dict(state["optimizer"])
start_epoch = state["epoch"]
else:
start_epoch = 0
model = train.torch.prepare_model(model)
for epoch in range(start_epoch, 100):
loss = train_epoch(model, optimizer)
# Save checkpoint every 10 epochs
if epoch % 10 == 0:
checkpoint = Checkpoint.from_directory(
train.get_context().get_trial_dir()
)
torch.save({
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch
}, checkpoint.path / "model.pt")
train.report({"loss": loss}, checkpoint=checkpoint)
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=8, use_gpu=True)
)
# Automatically resumes from checkpoint if training fails
result = trainer.fit()
Workflow 5: Multi-node training
from ray.train import ScalingConfig
# Connect to Ray cluster
ray.init(address="auto") # Or ray.init("ray://head-node:10001")
# Train across 4 nodes × 8 GPUs = 32 workers
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(
num_workers=32,
use_gpu=True,
resources_per_worker={"GPU": 1, "CPU": 4},
placement_strategy="SPREAD" # Spread across nodes
)
)
result = trainer.fit()
Launch Ray cluster:
# On head node
ray start --head --port=6379
# On worker nodes
ray start --address=<head-node-ip>:6379
When to use vs alternatives
Use Ray Train when:
- Training across multiple machines (multi-node)
- Need hyperparameter tuning at scale
- Want fault tolerance (auto-restart failed workers)
- Elastic scaling (add/remove nodes during training)
- Unified framework (same code for PyTorch/TF/HF)
Key advantages:
- Multi-node orchestration: Easiest multi-node setup
- Ray Tune integration: Best-in-class hyperparameter tuning
- Fault tolerance: Automatic recovery from failures
- Elastic: Add/remove nodes without restarting
- Framework agnostic: PyTorch, TensorFlow, HuggingFace, XGBoost
Use alternatives instead:
- Accelerate: Single-node multi-GPU, simpler
- PyTorch Lightning: High-level abstractions, callbacks
- DeepSpeed: Maximum performance, complex setup
- Raw DDP: Maximum control, minimal overhead
Common issues
Issue: Ray cluster not connecting
Check ray status:
ray status
# Should show:
# - Nodes: 4
# - GPUs: 32
# - Workers: Ready
If not connected:
# Restart head node
ray stop
ray start --head --port=6379 --dashboard-host=0.0.0.0
# Restart worker nodes
ray stop
ray start --address=<head-ip>:6379
Issue: Out of memory
Reduce workers or use gradient accumulation:
scaling_config=ScalingConfig(
num_workers=4, # Reduce from 8
use_gpu=True
)
# In train_func, accumulate gradients
for i, batch in enumerate(dataloader):
loss = model(batch) / accumulation_steps
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
Issue: Slow training
Check if data loading is bottleneck:
import time
def train_func(config):
for epoch in range(epochs):
start = time.time()
for batch in dataloader:
data_time = time.time() - start
# Train...
start = time.time()
print(f"Data loading: {data_time:.3f}s")
If data loading is slow, increase workers:
dataloader = DataLoader(dataset, num_workers=8)
Advanced topics
Multi-node setup: See references/multi-node.md for Ray cluster deployment on AWS, GCP, Kubernetes, and SLURM.
Hyperparameter tuning: See references/hyperparameter-tuning.md for Ray Tune integration, search algorithms (Optuna, HyperOpt), and population-based training.
Custom training loops: See references/custom-loops.md for advanced Ray Train usage, custom backends, and integration with other frameworks.
Hardware requirements
- Single node: 1+ GPUs (or CPUs)
- Multi-node: 2+ machines with network connectivity
- Cloud: AWS, GCP, Azure (Ray autoscaling)
- On-prem: Kubernetes, SLURM clusters
Supported accelerators:
- NVIDIA GPUs (CUDA)
- AMD GPUs (ROCm)
- TPUs (Google Cloud)
- CPUs
Resources
- Docs: https://docs.ray.io/en/latest/train/train.html
- GitHub: https://github.com/ray-project/ray ⭐ 36,000+
- Version: 2.40.0+
- Examples: https://docs.ray.io/en/latest/train/examples.html
- Slack: https://forms.gle/9TSdDYUgxYs8SA9e8
- Used by: OpenAI, Uber, Spotify, Shopify, Instacart