Claude Code Plugins

Community-maintained marketplace

Feedback

Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic scaling. Use when training massive models across multiple machines or running distributed hyperparameter sweeps.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ray-train
description Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic scaling. Use when training massive models across multiple machines or running distributed hyperparameter sweeps.

Ray Train - Distributed Training Orchestration

Quick start

Ray Train scales machine learning training from single GPU to multi-node clusters with minimal code changes.

Installation:

pip install -U "ray[train]"

Basic PyTorch training (single node):

import ray
from ray import train
from ray.train import ScalingConfig
from ray.train.torch import TorchTrainer
import torch
import torch.nn as nn

# Define training function
def train_func(config):
    # Your normal PyTorch code
    model = nn.Linear(10, 1)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

    # Prepare for distributed (Ray handles device placement)
    model = train.torch.prepare_model(model)

    for epoch in range(10):
        # Your training loop
        output = model(torch.randn(32, 10))
        loss = output.sum()
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        # Report metrics (logged automatically)
        train.report({"loss": loss.item(), "epoch": epoch})

# Run distributed training
trainer = TorchTrainer(
    train_func,
    scaling_config=ScalingConfig(
        num_workers=4,  # 4 GPUs/workers
        use_gpu=True
    )
)

result = trainer.fit()
print(f"Final loss: {result.metrics['loss']}")

That's it! Ray handles:

  • Distributed coordination
  • GPU allocation
  • Fault tolerance
  • Checkpointing
  • Metric aggregation

Common workflows

Workflow 1: Scale existing PyTorch code

Original single-GPU code:

model = MyModel().cuda()
optimizer = torch.optim.Adam(model.parameters())

for epoch in range(epochs):
    for batch in dataloader:
        loss = model(batch)
        loss.backward()
        optimizer.step()

Ray Train version (scales to multi-GPU/multi-node):

from ray.train.torch import TorchTrainer
from ray import train

def train_func(config):
    model = MyModel()
    optimizer = torch.optim.Adam(model.parameters())

    # Prepare for distributed (automatic device placement)
    model = train.torch.prepare_model(model)
    dataloader = train.torch.prepare_data_loader(dataloader)

    for epoch in range(epochs):
        for batch in dataloader:
            loss = model(batch)
            loss.backward()
            optimizer.step()

            # Report metrics
            train.report({"loss": loss.item()})

# Scale to 8 GPUs
trainer = TorchTrainer(
    train_func,
    scaling_config=ScalingConfig(num_workers=8, use_gpu=True)
)
trainer.fit()

Benefits: Same code runs on 1 GPU or 1000 GPUs

Workflow 2: HuggingFace Transformers integration

from ray.train.huggingface import TransformersTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments

def train_func(config):
    # Load model and tokenizer
    model = AutoModelForCausalLM.from_pretrained("gpt2")
    tokenizer = AutoTokenizer.from_pretrained("gpt2")

    # Training arguments (HuggingFace API)
    training_args = TrainingArguments(
        output_dir="./output",
        num_train_epochs=3,
        per_device_train_batch_size=8,
        learning_rate=2e-5,
    )

    # Ray automatically handles distributed training
    from transformers import Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
    )

    trainer.train()

# Scale to multi-node (2 nodes × 8 GPUs = 16 workers)
trainer = TransformersTrainer(
    train_func,
    scaling_config=ScalingConfig(
        num_workers=16,
        use_gpu=True,
        resources_per_worker={"GPU": 1}
    )
)

result = trainer.fit()

Workflow 3: Hyperparameter tuning with Ray Tune

from ray import tune
from ray.train.torch import TorchTrainer
from ray.tune.schedulers import ASHAScheduler

def train_func(config):
    # Use hyperparameters from config
    lr = config["lr"]
    batch_size = config["batch_size"]

    model = MyModel()
    optimizer = torch.optim.Adam(model.parameters(), lr=lr)

    model = train.torch.prepare_model(model)

    for epoch in range(10):
        # Training loop
        loss = train_epoch(model, optimizer, batch_size)
        train.report({"loss": loss, "epoch": epoch})

# Define search space
param_space = {
    "lr": tune.loguniform(1e-5, 1e-2),
    "batch_size": tune.choice([16, 32, 64, 128])
}

# Run 20 trials with early stopping
tuner = tune.Tuner(
    TorchTrainer(
        train_func,
        scaling_config=ScalingConfig(num_workers=4, use_gpu=True)
    ),
    param_space=param_space,
    tune_config=tune.TuneConfig(
        num_samples=20,
        scheduler=ASHAScheduler(metric="loss", mode="min")
    )
)

results = tuner.fit()
best = results.get_best_result(metric="loss", mode="min")
print(f"Best hyperparameters: {best.config}")

Result: Distributed hyperparameter search across cluster

Workflow 4: Checkpointing and fault tolerance

from ray import train
from ray.train import Checkpoint

def train_func(config):
    model = MyModel()
    optimizer = torch.optim.Adam(model.parameters())

    # Try to resume from checkpoint
    checkpoint = train.get_checkpoint()
    if checkpoint:
        with checkpoint.as_directory() as checkpoint_dir:
            state = torch.load(f"{checkpoint_dir}/model.pt")
            model.load_state_dict(state["model"])
            optimizer.load_state_dict(state["optimizer"])
            start_epoch = state["epoch"]
    else:
        start_epoch = 0

    model = train.torch.prepare_model(model)

    for epoch in range(start_epoch, 100):
        loss = train_epoch(model, optimizer)

        # Save checkpoint every 10 epochs
        if epoch % 10 == 0:
            checkpoint = Checkpoint.from_directory(
                train.get_context().get_trial_dir()
            )
            torch.save({
                "model": model.state_dict(),
                "optimizer": optimizer.state_dict(),
                "epoch": epoch
            }, checkpoint.path / "model.pt")

            train.report({"loss": loss}, checkpoint=checkpoint)

trainer = TorchTrainer(
    train_func,
    scaling_config=ScalingConfig(num_workers=8, use_gpu=True)
)

# Automatically resumes from checkpoint if training fails
result = trainer.fit()

Workflow 5: Multi-node training

from ray.train import ScalingConfig

# Connect to Ray cluster
ray.init(address="auto")  # Or ray.init("ray://head-node:10001")

# Train across 4 nodes × 8 GPUs = 32 workers
trainer = TorchTrainer(
    train_func,
    scaling_config=ScalingConfig(
        num_workers=32,
        use_gpu=True,
        resources_per_worker={"GPU": 1, "CPU": 4},
        placement_strategy="SPREAD"  # Spread across nodes
    )
)

result = trainer.fit()

Launch Ray cluster:

# On head node
ray start --head --port=6379

# On worker nodes
ray start --address=<head-node-ip>:6379

When to use vs alternatives

Use Ray Train when:

  • Training across multiple machines (multi-node)
  • Need hyperparameter tuning at scale
  • Want fault tolerance (auto-restart failed workers)
  • Elastic scaling (add/remove nodes during training)
  • Unified framework (same code for PyTorch/TF/HF)

Key advantages:

  • Multi-node orchestration: Easiest multi-node setup
  • Ray Tune integration: Best-in-class hyperparameter tuning
  • Fault tolerance: Automatic recovery from failures
  • Elastic: Add/remove nodes without restarting
  • Framework agnostic: PyTorch, TensorFlow, HuggingFace, XGBoost

Use alternatives instead:

  • Accelerate: Single-node multi-GPU, simpler
  • PyTorch Lightning: High-level abstractions, callbacks
  • DeepSpeed: Maximum performance, complex setup
  • Raw DDP: Maximum control, minimal overhead

Common issues

Issue: Ray cluster not connecting

Check ray status:

ray status

# Should show:
# - Nodes: 4
# - GPUs: 32
# - Workers: Ready

If not connected:

# Restart head node
ray stop
ray start --head --port=6379 --dashboard-host=0.0.0.0

# Restart worker nodes
ray stop
ray start --address=<head-ip>:6379

Issue: Out of memory

Reduce workers or use gradient accumulation:

scaling_config=ScalingConfig(
    num_workers=4,  # Reduce from 8
    use_gpu=True
)

# In train_func, accumulate gradients
for i, batch in enumerate(dataloader):
    loss = model(batch) / accumulation_steps
    loss.backward()

    if (i + 1) % accumulation_steps == 0:
        optimizer.step()
        optimizer.zero_grad()

Issue: Slow training

Check if data loading is bottleneck:

import time

def train_func(config):
    for epoch in range(epochs):
        start = time.time()
        for batch in dataloader:
            data_time = time.time() - start
            # Train...
            start = time.time()
            print(f"Data loading: {data_time:.3f}s")

If data loading is slow, increase workers:

dataloader = DataLoader(dataset, num_workers=8)

Advanced topics

Multi-node setup: See references/multi-node.md for Ray cluster deployment on AWS, GCP, Kubernetes, and SLURM.

Hyperparameter tuning: See references/hyperparameter-tuning.md for Ray Tune integration, search algorithms (Optuna, HyperOpt), and population-based training.

Custom training loops: See references/custom-loops.md for advanced Ray Train usage, custom backends, and integration with other frameworks.

Hardware requirements

  • Single node: 1+ GPUs (or CPUs)
  • Multi-node: 2+ machines with network connectivity
  • Cloud: AWS, GCP, Azure (Ray autoscaling)
  • On-prem: Kubernetes, SLURM clusters

Supported accelerators:

  • NVIDIA GPUs (CUDA)
  • AMD GPUs (ROCm)
  • TPUs (Google Cloud)
  • CPUs

Resources