| name | stable-diffusion-image-generation |
| description | State-of-the-art text-to-image generation with Stable Diffusion models via HuggingFace Diffusers. Use when generating images from text prompts, performing image-to-image translation, inpainting, or building custom diffusion pipelines. |
| version | 1.0.0 |
| author | Orchestra Research |
| license | MIT |
| tags | Image Generation, Stable Diffusion, Diffusers, Text-to-Image, Multimodal, Computer Vision |
| dependencies | diffusers>=0.30.0, transformers>=4.41.0, accelerate>=0.31.0, torch>=2.0.0 |
Stable Diffusion Image Generation
Comprehensive guide to generating images with Stable Diffusion using the HuggingFace Diffusers library.
When to use Stable Diffusion
Use Stable Diffusion when:
- Generating images from text descriptions
- Performing image-to-image translation (style transfer, enhancement)
- Inpainting (filling in masked regions)
- Outpainting (extending images beyond boundaries)
- Creating variations of existing images
- Building custom image generation workflows
Key features:
- Text-to-Image: Generate images from natural language prompts
- Image-to-Image: Transform existing images with text guidance
- Inpainting: Fill masked regions with context-aware content
- ControlNet: Add spatial conditioning (edges, poses, depth)
- LoRA Support: Efficient fine-tuning and style adaptation
- Multiple Models: SD 1.5, SDXL, SD 3.0, Flux support
Use alternatives instead:
- DALL-E 3: For API-based generation without GPU
- Midjourney: For artistic, stylized outputs
- Imagen: For Google Cloud integration
- Leonardo.ai: For web-based creative workflows
Quick start
Installation
pip install diffusers transformers accelerate torch
pip install xformers # Optional: memory-efficient attention
Basic text-to-image
from diffusers import DiffusionPipeline
import torch
# Load pipeline (auto-detects model type)
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16
)
pipe.to("cuda")
# Generate image
image = pipe(
"A serene mountain landscape at sunset, highly detailed",
num_inference_steps=50,
guidance_scale=7.5
).images[0]
image.save("output.png")
Using SDXL (higher quality)
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.to("cuda")
# Enable memory optimization
pipe.enable_model_cpu_offload()
image = pipe(
prompt="A futuristic city with flying cars, cinematic lighting",
height=1024,
width=1024,
num_inference_steps=30
).images[0]
Architecture overview
Three-pillar design
Diffusers is built around three core components:
Pipeline (orchestration)
├── Model (neural networks)
│ ├── UNet / Transformer (noise prediction)
│ ├── VAE (latent encoding/decoding)
│ └── Text Encoder (CLIP/T5)
└── Scheduler (denoising algorithm)
Pipeline inference flow
Text Prompt → Text Encoder → Text Embeddings
↓
Random Noise → [Denoising Loop] ← Scheduler
↓
Predicted Noise
↓
VAE Decoder → Final Image
Core concepts
Pipelines
Pipelines orchestrate complete workflows:
| Pipeline | Purpose |
|---|---|
StableDiffusionPipeline |
Text-to-image (SD 1.x/2.x) |
StableDiffusionXLPipeline |
Text-to-image (SDXL) |
StableDiffusion3Pipeline |
Text-to-image (SD 3.0) |
FluxPipeline |
Text-to-image (Flux models) |
StableDiffusionImg2ImgPipeline |
Image-to-image |
StableDiffusionInpaintPipeline |
Inpainting |
Schedulers
Schedulers control the denoising process:
| Scheduler | Steps | Quality | Use Case |
|---|---|---|---|
EulerDiscreteScheduler |
20-50 | Good | Default choice |
EulerAncestralDiscreteScheduler |
20-50 | Good | More variation |
DPMSolverMultistepScheduler |
15-25 | Excellent | Fast, high quality |
DDIMScheduler |
50-100 | Good | Deterministic |
LCMScheduler |
4-8 | Good | Very fast |
UniPCMultistepScheduler |
15-25 | Excellent | Fast convergence |
Swapping schedulers
from diffusers import DPMSolverMultistepScheduler
# Swap for faster generation
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config
)
# Now generate with fewer steps
image = pipe(prompt, num_inference_steps=20).images[0]
Generation parameters
Key parameters
| Parameter | Default | Description |
|---|---|---|
prompt |
Required | Text description of desired image |
negative_prompt |
None | What to avoid in the image |
num_inference_steps |
50 | Denoising steps (more = better quality) |
guidance_scale |
7.5 | Prompt adherence (7-12 typical) |
height, width |
512/1024 | Output dimensions (multiples of 8) |
generator |
None | Torch generator for reproducibility |
num_images_per_prompt |
1 | Batch size |
Reproducible generation
import torch
generator = torch.Generator(device="cuda").manual_seed(42)
image = pipe(
prompt="A cat wearing a top hat",
generator=generator,
num_inference_steps=50
).images[0]
Negative prompts
image = pipe(
prompt="Professional photo of a dog in a garden",
negative_prompt="blurry, low quality, distorted, ugly, bad anatomy",
guidance_scale=7.5
).images[0]
Image-to-image
Transform existing images with text guidance:
from diffusers import AutoPipelineForImage2Image
from PIL import Image
pipe = AutoPipelineForImage2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16
).to("cuda")
init_image = Image.open("input.jpg").resize((512, 512))
image = pipe(
prompt="A watercolor painting of the scene",
image=init_image,
strength=0.75, # How much to transform (0-1)
num_inference_steps=50
).images[0]
Inpainting
Fill masked regions:
from diffusers import AutoPipelineForInpainting
from PIL import Image
pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16
).to("cuda")
image = Image.open("photo.jpg")
mask = Image.open("mask.png") # White = inpaint region
result = pipe(
prompt="A red car parked on the street",
image=image,
mask_image=mask,
num_inference_steps=50
).images[0]
ControlNet
Add spatial conditioning for precise control:
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
# Load ControlNet for edge conditioning
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_canny",
torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
# Use Canny edge image as control
control_image = get_canny_image(input_image)
image = pipe(
prompt="A beautiful house in the style of Van Gogh",
image=control_image,
num_inference_steps=30
).images[0]
Available ControlNets
| ControlNet | Input Type | Use Case |
|---|---|---|
canny |
Edge maps | Preserve structure |
openpose |
Pose skeletons | Human poses |
depth |
Depth maps | 3D-aware generation |
normal |
Normal maps | Surface details |
mlsd |
Line segments | Architectural lines |
scribble |
Rough sketches | Sketch-to-image |
LoRA adapters
Load fine-tuned style adapters:
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16
).to("cuda")
# Load LoRA weights
pipe.load_lora_weights("path/to/lora", weight_name="style.safetensors")
# Generate with LoRA style
image = pipe("A portrait in the trained style").images[0]
# Adjust LoRA strength
pipe.fuse_lora(lora_scale=0.8)
# Unload LoRA
pipe.unload_lora_weights()
Multiple LoRAs
# Load multiple LoRAs
pipe.load_lora_weights("lora1", adapter_name="style")
pipe.load_lora_weights("lora2", adapter_name="character")
# Set weights for each
pipe.set_adapters(["style", "character"], adapter_weights=[0.7, 0.5])
image = pipe("A portrait").images[0]
Memory optimization
Enable CPU offloading
# Model CPU offload - moves models to CPU when not in use
pipe.enable_model_cpu_offload()
# Sequential CPU offload - more aggressive, slower
pipe.enable_sequential_cpu_offload()
Attention slicing
# Reduce memory by computing attention in chunks
pipe.enable_attention_slicing()
# Or specific chunk size
pipe.enable_attention_slicing("max")
xFormers memory-efficient attention
# Requires xformers package
pipe.enable_xformers_memory_efficient_attention()
VAE slicing for large images
# Decode latents in tiles for large images
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
Model variants
Loading different precisions
# FP16 (recommended for GPU)
pipe = DiffusionPipeline.from_pretrained(
"model-id",
torch_dtype=torch.float16,
variant="fp16"
)
# BF16 (better precision, requires Ampere+ GPU)
pipe = DiffusionPipeline.from_pretrained(
"model-id",
torch_dtype=torch.bfloat16
)
Loading specific components
from diffusers import UNet2DConditionModel, AutoencoderKL
# Load custom VAE
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
# Use with pipeline
pipe = DiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
vae=vae,
torch_dtype=torch.float16
)
Batch generation
Generate multiple images efficiently:
# Multiple prompts
prompts = [
"A cat playing piano",
"A dog reading a book",
"A bird painting a picture"
]
images = pipe(prompts, num_inference_steps=30).images
# Multiple images per prompt
images = pipe(
"A beautiful sunset",
num_images_per_prompt=4,
num_inference_steps=30
).images
Common workflows
Workflow 1: High-quality generation
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler
import torch
# 1. Load SDXL with optimizations
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
variant="fp16"
)
pipe.to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
# 2. Generate with quality settings
image = pipe(
prompt="A majestic lion in the savanna, golden hour lighting, 8k, detailed fur",
negative_prompt="blurry, low quality, cartoon, anime, sketch",
num_inference_steps=30,
guidance_scale=7.5,
height=1024,
width=1024
).images[0]
Workflow 2: Fast prototyping
from diffusers import AutoPipelineForText2Image, LCMScheduler
import torch
# Use LCM for 4-8 step generation
pipe = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
# Load LCM LoRA for fast generation
pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.fuse_lora()
# Generate in ~1 second
image = pipe(
"A beautiful landscape",
num_inference_steps=4,
guidance_scale=1.0
).images[0]
Common issues
CUDA out of memory:
# Enable memory optimizations
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
pipe.enable_vae_slicing()
# Or use lower precision
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
Black/noise images:
# Check VAE configuration
# Use safety checker bypass if needed
pipe.safety_checker = None
# Ensure proper dtype consistency
pipe = pipe.to(dtype=torch.float16)
Slow generation:
# Use faster scheduler
from diffusers import DPMSolverMultistepScheduler
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
# Reduce steps
image = pipe(prompt, num_inference_steps=20).images[0]
References
- Advanced Usage - Custom pipelines, fine-tuning, deployment
- Troubleshooting - Common issues and solutions
Resources
- Documentation: https://huggingface.co/docs/diffusers
- Repository: https://github.com/huggingface/diffusers
- Model Hub: https://huggingface.co/models?library=diffusers
- Discord: https://discord.gg/diffusers