| name | grpo-rl-training |
| description | Expert guidance for GRPO/RL fine-tuning with TRL for reasoning and task-specific model training |
| version | 1.0.0 |
| author | Orchestra Research |
| license | MIT |
| tags | reinforcement-learning, grpo, trl, fine-tuning, reasoning, machine-learning |
| dependencies | transformers>=4.47.0, trl>=0.14.0, datasets>=3.2.0, peft>=0.14.0, torch |
GRPO/RL Training with TRL
Expert-level guidance for implementing Group Relative Policy Optimization (GRPO) using the Transformer Reinforcement Learning (TRL) library. This skill provides battle-tested patterns, critical insights, and production-ready workflows for fine-tuning language models with custom reward functions.
When to Use This Skill
Use GRPO training when you need to:
- Enforce specific output formats (e.g., XML tags, JSON, structured reasoning)
- Teach verifiable tasks with objective correctness metrics (math, coding, fact-checking)
- Improve reasoning capabilities by rewarding chain-of-thought patterns
- Align models to domain-specific behaviors without labeled preference data
- Optimize for multiple objectives simultaneously (format + correctness + style)
Do NOT use GRPO for:
- Simple supervised fine-tuning tasks (use SFT instead)
- Tasks without clear reward signals
- When you already have high-quality preference pairs (use DPO/PPO instead)
Core Concepts
1. GRPO Algorithm Fundamentals
Key Mechanism:
- Generates multiple completions for each prompt (group size: 4-16)
- Compares completions within each group using reward functions
- Updates policy to favor higher-rewarded responses relative to the group
Critical Difference from PPO:
- No separate reward model needed
- More sample-efficient (learns from within-group comparisons)
- Simpler to implement and debug
Mathematical Intuition:
For each prompt p:
1. Generate N completions: {c₁, c₂, ..., cₙ}
2. Compute rewards: {r₁, r₂, ..., rₙ}
3. Learn to increase probability of high-reward completions
relative to low-reward ones in the same group
2. Reward Function Design Philosophy
Golden Rules:
- Compose multiple reward functions - Each handles one aspect (format, correctness, style)
- Scale rewards appropriately - Higher weight = stronger signal
- Use incremental rewards - Partial credit for partial compliance
- Test rewards independently - Debug each reward function in isolation
Reward Function Types:
| Type | Use Case | Example Weight |
|---|---|---|
| Correctness | Verifiable tasks (math, code) | 2.0 (highest) |
| Format | Strict structure enforcement | 0.5-1.0 |
| Length | Encourage verbosity/conciseness | 0.1-0.5 |
| Style | Penalize unwanted patterns | -0.5 to 0.5 |
Implementation Workflow
Step 1: Dataset Preparation
Critical Requirements:
- Prompts in chat format (list of dicts with 'role' and 'content')
- Include system prompts to set expectations
- For verifiable tasks, include ground truth answers as additional columns
Example Structure:
from datasets import load_dataset, Dataset
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
[Your step-by-step thinking]
</reasoning>
<answer>
[Final answer]
</answer>
"""
def prepare_dataset(raw_data):
"""
Transform raw data into GRPO-compatible format.
Returns: Dataset with columns:
- 'prompt': List[Dict] with role/content (system + user messages)
- 'answer': str (ground truth, optional but recommended)
"""
return raw_data.map(lambda x: {
'prompt': [
{'role': 'system', 'content': SYSTEM_PROMPT},
{'role': 'user', 'content': x['question']}
],
'answer': extract_answer(x['raw_answer'])
})
Pro Tips:
- Use one-shot or few-shot examples in system prompt for complex formats
- Keep prompts concise (max_prompt_length: 256-512 tokens)
- Validate data quality before training (garbage in = garbage out)
Step 2: Reward Function Implementation
Template Structure:
def reward_function_name(
prompts, # List[List[Dict]]: Original prompts
completions, # List[List[Dict]]: Model generations
answer=None, # Optional: Ground truth from dataset
**kwargs # Additional dataset columns
) -> list[float]:
"""
Evaluate completions and return rewards.
Returns: List of floats (one per completion)
"""
# Extract completion text
responses = [comp[0]['content'] for comp in completions]
# Compute rewards
rewards = []
for response in responses:
score = compute_score(response)
rewards.append(score)
return rewards
Example 1: Correctness Reward (Math/Coding)
def correctness_reward(prompts, completions, answer, **kwargs):
"""Reward correct answers with high score."""
responses = [comp[0]['content'] for comp in completions]
extracted = [extract_final_answer(r) for r in responses]
return [2.0 if ans == gt else 0.0
for ans, gt in zip(extracted, answer)]
Example 2: Format Reward (Structured Output)
import re
def format_reward(completions, **kwargs):
"""Reward XML-like structured format."""
pattern = r'<reasoning>.*?</reasoning>\s*<answer>.*?</answer>'
responses = [comp[0]['content'] for comp in completions]
return [1.0 if re.search(pattern, r, re.DOTALL) else 0.0
for r in responses]
Example 3: Incremental Format Reward (Partial Credit)
def incremental_format_reward(completions, **kwargs):
"""Award partial credit for format compliance."""
responses = [comp[0]['content'] for comp in completions]
rewards = []
for r in responses:
score = 0.0
if '<reasoning>' in r:
score += 0.25
if '</reasoning>' in r:
score += 0.25
if '<answer>' in r:
score += 0.25
if '</answer>' in r:
score += 0.25
# Penalize extra text after closing tag
if r.count('</answer>') == 1:
extra_text = r.split('</answer>')[-1].strip()
score -= len(extra_text) * 0.001
rewards.append(score)
return rewards
Critical Insight: Combine 3-5 reward functions for robust training. Order matters less than diversity of signals.
Step 3: Training Configuration
Memory-Optimized Config (Small GPU)
from trl import GRPOConfig
training_args = GRPOConfig(
output_dir="outputs/grpo-model",
# Learning rate
learning_rate=5e-6, # Lower = more stable
adam_beta1=0.9,
adam_beta2=0.99,
weight_decay=0.1,
warmup_ratio=0.1,
lr_scheduler_type='cosine',
# Batch settings
per_device_train_batch_size=1,
gradient_accumulation_steps=4, # Effective batch = 4
# GRPO-specific
num_generations=8, # Group size: 8-16 recommended
max_prompt_length=256,
max_completion_length=512,
# Training duration
num_train_epochs=1,
max_steps=None, # Or set fixed steps (e.g., 500)
# Optimization
bf16=True, # Faster on A100/H100
optim="adamw_8bit", # Memory-efficient optimizer
max_grad_norm=0.1,
# Logging
logging_steps=1,
save_steps=100,
report_to="wandb", # Or "none" for no logging
)
High-Performance Config (Large GPU)
training_args = GRPOConfig(
output_dir="outputs/grpo-model",
learning_rate=1e-5,
per_device_train_batch_size=4,
gradient_accumulation_steps=2,
num_generations=16, # Larger groups = better signal
max_prompt_length=512,
max_completion_length=1024,
num_train_epochs=1,
bf16=True,
use_vllm=True, # Fast generation with vLLM
logging_steps=10,
)
Critical Hyperparameters:
| Parameter | Impact | Tuning Advice |
|---|---|---|
num_generations |
Group size for comparison | Start with 8, increase to 16 if GPU allows |
learning_rate |
Convergence speed/stability | 5e-6 (safe), 1e-5 (faster, riskier) |
max_completion_length |
Output verbosity | Match your task (512 for reasoning, 256 for short answers) |
gradient_accumulation_steps |
Effective batch size | Increase if GPU memory limited |
Step 4: Model Setup and Training
Standard Setup (Transformers)
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig
from trl import GRPOTrainer
# Load model
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2", # 2-3x faster
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token
# Optional: LoRA for parameter-efficient training
peft_config = LoraConfig(
r=16, # Rank (higher = more capacity)
lora_alpha=32, # Scaling factor (typically 2*r)
target_modules=[
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
task_type="CAUSAL_LM",
lora_dropout=0.05,
)
# Initialize trainer
trainer = GRPOTrainer(
model=model,
processing_class=tokenizer,
reward_funcs=[
incremental_format_reward,
format_reward,
correctness_reward,
],
args=training_args,
train_dataset=dataset,
peft_config=peft_config, # Remove for full fine-tuning
)
# Train
trainer.train()
# Save
trainer.save_model("final_model")
Unsloth Setup (2-3x Faster)
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="google/gemma-3-1b-it",
max_seq_length=1024,
load_in_4bit=True,
fast_inference=True,
max_lora_rank=32,
)
model = FastLanguageModel.get_peft_model(
model,
r=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"],
lora_alpha=32,
use_gradient_checkpointing="unsloth",
)
# Rest is identical to standard setup
trainer = GRPOTrainer(model=model, ...)
trainer.train()
Critical Training Insights
1. Loss Behavior (EXPECTED PATTERN)
- Loss starts near 0 and INCREASES during training
- This is CORRECT - loss measures KL divergence from initial policy
- Model is learning (diverging from original behavior to optimize rewards)
- Monitor reward metrics instead of loss for progress
2. Reward Tracking
Key metrics to watch:
reward: Average across all completionsreward_std: Diversity within groups (should remain > 0)kl: KL divergence from reference (should grow moderately)
Healthy Training Pattern:
Step Reward Reward_Std KL
100 0.5 0.3 0.02
200 0.8 0.25 0.05
300 1.2 0.2 0.08 ← Good progression
400 1.5 0.15 0.12
Warning Signs:
- Reward std → 0 (model collapsing to single response)
- KL exploding (> 0.5) (diverging too much, reduce LR)
- Reward stuck (reward functions too harsh or model capacity issue)
3. Common Pitfalls and Solutions
| Problem | Symptom | Solution |
|---|---|---|
| Mode collapse | All completions identical | Increase num_generations, add diversity penalty |
| No learning | Flat rewards | Check reward function logic, increase LR |
| OOM errors | GPU memory exceeded | Reduce num_generations, enable gradient checkpointing |
| Slow training | < 1 it/s | Enable use_vllm=True, use Unsloth, reduce seq length |
| Format ignored | Model doesn't follow structure | Increase format reward weight, add incremental rewards |
Advanced Patterns
1. Multi-Stage Training
For complex tasks, train in stages:
# Stage 1: Format compliance (epochs=1)
trainer_stage1 = GRPOTrainer(
model=model,
reward_funcs=[incremental_format_reward, format_reward],
...
)
trainer_stage1.train()
# Stage 2: Correctness (epochs=1)
trainer_stage2 = GRPOTrainer(
model=model,
reward_funcs=[format_reward, correctness_reward],
...
)
trainer_stage2.train()
2. Adaptive Reward Scaling
class AdaptiveReward:
def __init__(self, base_reward_func, initial_weight=1.0):
self.func = base_reward_func
self.weight = initial_weight
def __call__(self, *args, **kwargs):
rewards = self.func(*args, **kwargs)
return [r * self.weight for r in rewards]
def adjust_weight(self, success_rate):
"""Increase weight if model struggling, decrease if succeeding."""
if success_rate < 0.3:
self.weight *= 1.2
elif success_rate > 0.8:
self.weight *= 0.9
3. Custom Dataset Integration
def load_custom_knowledge_base(csv_path):
"""Example: School communication platform docs."""
import pandas as pd
df = pd.read_csv(csv_path)
dataset = Dataset.from_pandas(df).map(lambda x: {
'prompt': [
{'role': 'system', 'content': CUSTOM_SYSTEM_PROMPT},
{'role': 'user', 'content': x['question']}
],
'answer': x['expert_answer']
})
return dataset
Deployment and Inference
Save and Merge LoRA
# Merge LoRA adapters into base model
if hasattr(trainer.model, 'merge_and_unload'):
merged_model = trainer.model.merge_and_unload()
merged_model.save_pretrained("production_model")
tokenizer.save_pretrained("production_model")
Inference Example
from transformers import pipeline
generator = pipeline(
"text-generation",
model="production_model",
tokenizer=tokenizer
)
result = generator(
[
{'role': 'system', 'content': SYSTEM_PROMPT},
{'role': 'user', 'content': "What is 15 + 27?"}
],
max_new_tokens=256,
do_sample=True,
temperature=0.7,
top_p=0.9
)
print(result[0]['generated_text'])
Best Practices Checklist
Before Training:
- Validate dataset format (prompts as List[Dict])
- Test reward functions on sample data
- Calculate expected max_prompt_length from data
- Choose appropriate num_generations based on GPU memory
- Set up logging (wandb recommended)
During Training:
- Monitor reward progression (should increase)
- Check reward_std (should stay > 0.1)
- Watch for OOM errors (reduce batch size if needed)
- Sample generations every 50-100 steps
- Validate format compliance on holdout set
After Training:
- Merge LoRA weights if using PEFT
- Test on diverse prompts
- Compare to baseline model
- Document reward weights and hyperparameters
- Save reproducibility config
Troubleshooting Guide
Debugging Workflow
- Isolate reward functions - Test each independently
- Check data distribution - Ensure diversity in prompts
- Reduce complexity - Start with single reward, add gradually
- Monitor generations - Print samples every N steps
- Validate extraction logic - Ensure answer parsing works
Quick Fixes
# Debug reward function
def debug_reward(completions, **kwargs):
responses = [comp[0]['content'] for comp in completions]
for i, r in enumerate(responses[:2]): # Print first 2
print(f"Response {i}: {r[:200]}...")
return [1.0] * len(responses) # Dummy rewards
# Test without training
trainer = GRPOTrainer(..., reward_funcs=[debug_reward])
trainer.generate_completions(dataset[:1]) # Generate without updating
References and Resources
Official Documentation:
- TRL GRPO Trainer: https://huggingface.co/docs/trl/grpo_trainer
- DeepSeek R1 Paper: https://arxiv.org/abs/2501.12948
- Unsloth Docs: https://docs.unsloth.ai/
Example Repositories:
- Open R1 Implementation: https://github.com/huggingface/open-r1
- TRL Examples: https://github.com/huggingface/trl/tree/main/examples
Recommended Reading:
- Progressive Disclosure Pattern for agent instructions
- Reward shaping in RL (Ng et al.)
- LoRA paper (Hu et al., 2021)
Usage Instructions for Agents
When this skill is loaded:
- Read this entire file before implementing GRPO training
- Start with the simplest reward function (e.g., length-based) to validate setup
- Use the templates in
templates/directory as starting points - Reference examples in
examples/for task-specific implementations - Follow the workflow sequentially (don't skip steps)
- Debug incrementally - add one reward function at a time
Critical Reminders:
- Always use multiple reward functions (3-5 is optimal)
- Monitor reward metrics, not loss
- Test reward functions before training
- Start small (num_generations=4), scale up gradually
- Save checkpoints frequently (every 100 steps)
This skill is designed for expert-level implementation. Beginners should start with supervised fine-tuning before attempting GRPO.