Claude Code Plugins

Community-maintained marketplace

Feedback

Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track alignments, handle padding/truncation. Integrates seamlessly with transformers. Use when you need high-performance tokenization or custom tokenizer training.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name huggingface-tokenizers
description Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track alignments, handle padding/truncation. Integrates seamlessly with transformers. Use when you need high-performance tokenization or custom tokenizer training.
version 1.0.0
author Orchestra Research
license MIT
tags Tokenization, HuggingFace, BPE, WordPiece, Unigram, Fast Tokenization, Rust, Custom Tokenizer, Alignment Tracking, Production
dependencies tokenizers, transformers, datasets

HuggingFace Tokenizers - Fast Tokenization for NLP

Fast, production-ready tokenizers with Rust performance and Python ease-of-use.

When to use HuggingFace Tokenizers

Use HuggingFace Tokenizers when:

  • Need extremely fast tokenization (<20s per GB of text)
  • Training custom tokenizers from scratch
  • Want alignment tracking (token → original text position)
  • Building production NLP pipelines
  • Need to tokenize large corpora efficiently

Performance:

  • Speed: <20 seconds to tokenize 1GB on CPU
  • Implementation: Rust core with Python/Node.js bindings
  • Efficiency: 10-100× faster than pure Python implementations

Use alternatives instead:

  • SentencePiece: Language-independent, used by T5/ALBERT
  • tiktoken: OpenAI's BPE tokenizer for GPT models
  • transformers AutoTokenizer: Loading pretrained only (uses this library internally)

Quick start

Installation

# Install tokenizers
pip install tokenizers

# With transformers integration
pip install tokenizers transformers

Load pretrained tokenizer

from tokenizers import Tokenizer

# Load from HuggingFace Hub
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")

# Encode text
output = tokenizer.encode("Hello, how are you?")
print(output.tokens)  # ['hello', ',', 'how', 'are', 'you', '?']
print(output.ids)     # [7592, 1010, 2129, 2024, 2017, 1029]

# Decode back
text = tokenizer.decode(output.ids)
print(text)  # "hello, how are you?"

Train custom BPE tokenizer

from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace

# Initialize tokenizer with BPE model
tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
tokenizer.pre_tokenizer = Whitespace()

# Configure trainer
trainer = BpeTrainer(
    vocab_size=30000,
    special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
    min_frequency=2
)

# Train on files
files = ["train.txt", "validation.txt"]
tokenizer.train(files, trainer)

# Save
tokenizer.save("my-tokenizer.json")

Training time: ~1-2 minutes for 100MB corpus, ~10-20 minutes for 1GB

Batch encoding with padding

# Enable padding
tokenizer.enable_padding(pad_id=3, pad_token="[PAD]")

# Encode batch
texts = ["Hello world", "This is a longer sentence"]
encodings = tokenizer.encode_batch(texts)

for encoding in encodings:
    print(encoding.ids)
# [101, 7592, 2088, 102, 3, 3, 3]
# [101, 2023, 2003, 1037, 2936, 6251, 102]

Tokenization algorithms

BPE (Byte-Pair Encoding)

How it works:

  1. Start with character-level vocabulary
  2. Find most frequent character pair
  3. Merge into new token, add to vocabulary
  4. Repeat until vocabulary size reached

Used by: GPT-2, GPT-3, RoBERTa, BART, DeBERTa

from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import ByteLevel

tokenizer = Tokenizer(BPE(unk_token="<|endoftext|>"))
tokenizer.pre_tokenizer = ByteLevel()

trainer = BpeTrainer(
    vocab_size=50257,
    special_tokens=["<|endoftext|>"],
    min_frequency=2
)

tokenizer.train(files=["data.txt"], trainer=trainer)

Advantages:

  • Handles OOV words well (breaks into subwords)
  • Flexible vocabulary size
  • Good for morphologically rich languages

Trade-offs:

  • Tokenization depends on merge order
  • May split common words unexpectedly

WordPiece

How it works:

  1. Start with character vocabulary
  2. Score merge pairs: frequency(pair) / (frequency(first) × frequency(second))
  3. Merge highest scoring pair
  4. Repeat until vocabulary size reached

Used by: BERT, DistilBERT, MobileBERT

from tokenizers import Tokenizer
from tokenizers.models import WordPiece
from tokenizers.trainers import WordPieceTrainer
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.normalizers import BertNormalizer

tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
tokenizer.normalizer = BertNormalizer(lowercase=True)
tokenizer.pre_tokenizer = Whitespace()

trainer = WordPieceTrainer(
    vocab_size=30522,
    special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"],
    continuing_subword_prefix="##"
)

tokenizer.train(files=["corpus.txt"], trainer=trainer)

Advantages:

  • Prioritizes meaningful merges (high score = semantically related)
  • Used successfully in BERT (state-of-the-art results)

Trade-offs:

  • Unknown words become [UNK] if no subword match
  • Saves vocabulary, not merge rules (larger files)

Unigram

How it works:

  1. Start with large vocabulary (all substrings)
  2. Compute loss for corpus with current vocabulary
  3. Remove tokens with minimal impact on loss
  4. Repeat until vocabulary size reached

Used by: ALBERT, T5, mBART, XLNet (via SentencePiece)

from tokenizers import Tokenizer
from tokenizers.models import Unigram
from tokenizers.trainers import UnigramTrainer

tokenizer = Tokenizer(Unigram())

trainer = UnigramTrainer(
    vocab_size=8000,
    special_tokens=["<unk>", "<s>", "</s>"],
    unk_token="<unk>"
)

tokenizer.train(files=["data.txt"], trainer=trainer)

Advantages:

  • Probabilistic (finds most likely tokenization)
  • Works well for languages without word boundaries
  • Handles diverse linguistic contexts

Trade-offs:

  • Computationally expensive to train
  • More hyperparameters to tune

Tokenization pipeline

Complete pipeline: Normalization → Pre-tokenization → Model → Post-processing

Normalization

Clean and standardize text:

from tokenizers.normalizers import NFD, StripAccents, Lowercase, Sequence

tokenizer.normalizer = Sequence([
    NFD(),           # Unicode normalization (decompose)
    Lowercase(),     # Convert to lowercase
    StripAccents()   # Remove accents
])

# Input: "Héllo WORLD"
# After normalization: "hello world"

Common normalizers:

  • NFD, NFC, NFKD, NFKC - Unicode normalization forms
  • Lowercase() - Convert to lowercase
  • StripAccents() - Remove accents (é → e)
  • Strip() - Remove whitespace
  • Replace(pattern, content) - Regex replacement

Pre-tokenization

Split text into word-like units:

from tokenizers.pre_tokenizers import Whitespace, Punctuation, Sequence, ByteLevel

# Split on whitespace and punctuation
tokenizer.pre_tokenizer = Sequence([
    Whitespace(),
    Punctuation()
])

# Input: "Hello, world!"
# After pre-tokenization: ["Hello", ",", "world", "!"]

Common pre-tokenizers:

  • Whitespace() - Split on spaces, tabs, newlines
  • ByteLevel() - GPT-2 style byte-level splitting
  • Punctuation() - Isolate punctuation
  • Digits(individual_digits=True) - Split digits individually
  • Metaspace() - Replace spaces with ▁ (SentencePiece style)

Post-processing

Add special tokens for model input:

from tokenizers.processors import TemplateProcessing

# BERT-style: [CLS] sentence [SEP]
tokenizer.post_processor = TemplateProcessing(
    single="[CLS] $A [SEP]",
    pair="[CLS] $A [SEP] $B [SEP]",
    special_tokens=[
        ("[CLS]", 1),
        ("[SEP]", 2),
    ],
)

Common patterns:

# GPT-2: sentence <|endoftext|>
TemplateProcessing(
    single="$A <|endoftext|>",
    special_tokens=[("<|endoftext|>", 50256)]
)

# RoBERTa: <s> sentence </s>
TemplateProcessing(
    single="<s> $A </s>",
    pair="<s> $A </s> </s> $B </s>",
    special_tokens=[("<s>", 0), ("</s>", 2)]
)

Alignment tracking

Track token positions in original text:

output = tokenizer.encode("Hello, world!")

# Get token offsets
for token, offset in zip(output.tokens, output.offsets):
    start, end = offset
    print(f"{token:10} → [{start:2}, {end:2}): {text[start:end]!r}")

# Output:
# hello      → [ 0,  5): 'Hello'
# ,          → [ 5,  6): ','
# world      → [ 7, 12): 'world'
# !          → [12, 13): '!'

Use cases:

  • Named entity recognition (map predictions back to text)
  • Question answering (extract answer spans)
  • Token classification (align labels to original positions)

Integration with transformers

Load with AutoTokenizer

from transformers import AutoTokenizer

# AutoTokenizer automatically uses fast tokenizers
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

# Check if using fast tokenizer
print(tokenizer.is_fast)  # True

# Access underlying tokenizers.Tokenizer
fast_tokenizer = tokenizer.backend_tokenizer
print(type(fast_tokenizer))  # <class 'tokenizers.Tokenizer'>

Convert custom tokenizer to transformers

from tokenizers import Tokenizer
from transformers import PreTrainedTokenizerFast

# Train custom tokenizer
tokenizer = Tokenizer(BPE())
# ... train tokenizer ...
tokenizer.save("my-tokenizer.json")

# Wrap for transformers
transformers_tokenizer = PreTrainedTokenizerFast(
    tokenizer_file="my-tokenizer.json",
    unk_token="[UNK]",
    pad_token="[PAD]",
    cls_token="[CLS]",
    sep_token="[SEP]",
    mask_token="[MASK]"
)

# Use like any transformers tokenizer
outputs = transformers_tokenizer(
    "Hello world",
    padding=True,
    truncation=True,
    max_length=512,
    return_tensors="pt"
)

Common patterns

Train from iterator (large datasets)

from datasets import load_dataset

# Load dataset
dataset = load_dataset("wikitext", "wikitext-103-raw-v1", split="train")

# Create batch iterator
def batch_iterator(batch_size=1000):
    for i in range(0, len(dataset), batch_size):
        yield dataset[i:i + batch_size]["text"]

# Train tokenizer
tokenizer.train_from_iterator(
    batch_iterator(),
    trainer=trainer,
    length=len(dataset)  # For progress bar
)

Performance: Processes 1GB in ~10-20 minutes

Enable truncation and padding

# Enable truncation
tokenizer.enable_truncation(max_length=512)

# Enable padding
tokenizer.enable_padding(
    pad_id=tokenizer.token_to_id("[PAD]"),
    pad_token="[PAD]",
    length=512  # Fixed length, or None for batch max
)

# Encode with both
output = tokenizer.encode("This is a long sentence that will be truncated...")
print(len(output.ids))  # 512

Multi-processing

from tokenizers import Tokenizer
from multiprocessing import Pool

# Load tokenizer
tokenizer = Tokenizer.from_file("tokenizer.json")

def encode_batch(texts):
    return tokenizer.encode_batch(texts)

# Process large corpus in parallel
with Pool(8) as pool:
    # Split corpus into chunks
    chunk_size = 1000
    chunks = [corpus[i:i+chunk_size] for i in range(0, len(corpus), chunk_size)]

    # Encode in parallel
    results = pool.map(encode_batch, chunks)

Speedup: 5-8× with 8 cores

Performance benchmarks

Training speed

Corpus Size BPE (30k vocab) WordPiece (30k) Unigram (8k)
10 MB 15 sec 18 sec 25 sec
100 MB 1.5 min 2 min 4 min
1 GB 15 min 20 min 40 min

Hardware: 16-core CPU, tested on English Wikipedia

Tokenization speed

Implementation 1 GB corpus Throughput
Pure Python ~20 minutes ~50 MB/min
HF Tokenizers ~15 seconds ~4 GB/min
Speedup 80× 80×

Test: English text, average sentence length 20 words

Memory usage

Task Memory
Load tokenizer ~10 MB
Train BPE (30k vocab) ~200 MB
Encode 1M sentences ~500 MB

Supported models

Pre-trained tokenizers available via from_pretrained():

BERT family:

  • bert-base-uncased, bert-large-cased
  • distilbert-base-uncased
  • roberta-base, roberta-large

GPT family:

  • gpt2, gpt2-medium, gpt2-large
  • distilgpt2

T5 family:

  • t5-small, t5-base, t5-large
  • google/flan-t5-xxl

Other:

  • facebook/bart-base, facebook/mbart-large-cc25
  • albert-base-v2, albert-xlarge-v2
  • xlm-roberta-base, xlm-roberta-large

Browse all: https://huggingface.co/models?library=tokenizers

References

Resources