| name | llava |
| description | Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image chat, visual question answering, and instruction following. Use for vision-language chatbots or image understanding tasks. Best for conversational image analysis. |
LLaVA - Large Language and Vision Assistant
Open-source vision-language model for conversational image understanding.
When to use LLaVA
Use when:
- Building vision-language chatbots
- Visual question answering (VQA)
- Image description and captioning
- Multi-turn image conversations
- Visual instruction following
- Document understanding with images
Metrics:
- 23,000+ GitHub stars
- GPT-4V level capabilities (targeted)
- Apache 2.0 License
- Multiple model sizes (7B-34B params)
Use alternatives instead:
- GPT-4V: Highest quality, API-based
- CLIP: Simple zero-shot classification
- BLIP-2: Better for captioning only
- Flamingo: Research, not open-source
Quick start
Installation
# Clone repository
git clone https://github.com/haotian-liu/LLaVA
cd LLaVA
# Install
pip install -e .
Basic usage
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import torch
# Load model
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
# Load image
image = Image.open("image.jpg")
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# Create conversation
conv = conv_templates["llava_v1"].copy()
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# Generate response
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=512
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
print(response)
Available models
| Model | Parameters | VRAM | Quality |
|---|---|---|---|
| LLaVA-v1.5-7B | 7B | ~14 GB | Good |
| LLaVA-v1.5-13B | 13B | ~28 GB | Better |
| LLaVA-v1.6-34B | 34B | ~70 GB | Best |
# Load different models
model_7b = "liuhaotian/llava-v1.5-7b"
model_13b = "liuhaotian/llava-v1.5-13b"
model_34b = "liuhaotian/llava-v1.6-34b"
# 4-bit quantization for lower VRAM
load_4bit = True # Reduces VRAM by ~4×
CLI usage
# Single image query
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg \
--query "What is in this image?"
# Multi-turn conversation
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg
# Then type questions interactively
Web UI (Gradio)
# Launch Gradio interface
python -m llava.serve.gradio_web_server \
--model-path liuhaotian/llava-v1.5-7b \
--load-4bit # Optional: reduce VRAM
# Access at http://localhost:7860
Multi-turn conversations
# Initialize conversation
conv = conv_templates["llava_v1"].copy()
# Turn 1
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
response1 = generate(conv, model, image) # "A dog playing in a park"
# Turn 2
conv.messages[-1][1] = response1 # Add previous response
conv.append_message(conv.roles[0], "What breed is the dog?")
conv.append_message(conv.roles[1], None)
response2 = generate(conv, model, image) # "Golden Retriever"
# Turn 3
conv.messages[-1][1] = response2
conv.append_message(conv.roles[0], "What time of day is it?")
conv.append_message(conv.roles[1], None)
response3 = generate(conv, model, image)
Common tasks
Image captioning
question = "Describe this image in detail."
response = ask(model, image, question)
Visual question answering
question = "How many people are in the image?"
response = ask(model, image, question)
Object detection (textual)
question = "List all the objects you can see in this image."
response = ask(model, image, question)
Scene understanding
question = "What is happening in this scene?"
response = ask(model, image, question)
Document understanding
question = "What is the main topic of this document?"
response = ask(model, document_image, question)
Training custom model
# Stage 1: Feature alignment (558K image-caption pairs)
bash scripts/v1_5/pretrain.sh
# Stage 2: Visual instruction tuning (150K instruction data)
bash scripts/v1_5/finetune.sh
Quantization (reduce VRAM)
# 4-bit quantization
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path="liuhaotian/llava-v1.5-13b",
model_base=None,
model_name=get_model_name_from_path("liuhaotian/llava-v1.5-13b"),
load_4bit=True # Reduces VRAM ~4×
)
# 8-bit quantization
load_8bit=True # Reduces VRAM ~2×
Best practices
- Start with 7B model - Good quality, manageable VRAM
- Use 4-bit quantization - Reduces VRAM significantly
- GPU required - CPU inference extremely slow
- Clear prompts - Specific questions get better answers
- Multi-turn conversations - Maintain conversation context
- Temperature 0.2-0.7 - Balance creativity/consistency
- max_new_tokens 512-1024 - For detailed responses
- Batch processing - Process multiple images sequentially
Performance
| Model | VRAM (FP16) | VRAM (4-bit) | Speed (tokens/s) |
|---|---|---|---|
| 7B | ~14 GB | ~4 GB | ~20 |
| 13B | ~28 GB | ~8 GB | ~12 |
| 34B | ~70 GB | ~18 GB | ~5 |
On A100 GPU
Benchmarks
LLaVA achieves competitive scores on:
- VQAv2: 78.5%
- GQA: 62.0%
- MM-Vet: 35.4%
- MMBench: 64.3%
Limitations
- Hallucinations - May describe things not in image
- Spatial reasoning - Struggles with precise locations
- Small text - Difficulty reading fine print
- Object counting - Imprecise for many objects
- VRAM requirements - Need powerful GPU
- Inference speed - Slower than CLIP
Integration with frameworks
LangChain
from langchain.llms.base import LLM
class LLaVALLM(LLM):
def _call(self, prompt, stop=None):
# Custom LLaVA inference
return response
llm = LLaVALLM()
Gradio App
import gradio as gr
def chat(image, text, history):
response = ask_llava(model, image, text)
return response
demo = gr.ChatInterface(
chat,
additional_inputs=[gr.Image(type="pil")],
title="LLaVA Chat"
)
demo.launch()
Resources
- GitHub: https://github.com/haotian-liu/LLaVA ⭐ 23,000+
- Paper: https://arxiv.org/abs/2304.08485
- Demo: https://llava.hliu.cc
- Models: https://huggingface.co/liuhaotian
- License: Apache 2.0