Claude Code Plugins

Community-maintained marketplace

Feedback

Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pinecone
description Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure.

Pinecone - Managed Vector Database

The vector database for production AI applications.

When to use Pinecone

Use when:

  • Need managed, serverless vector database
  • Production RAG applications
  • Auto-scaling required
  • Low latency critical (<100ms)
  • Don't want to manage infrastructure
  • Need hybrid search (dense + sparse vectors)

Metrics:

  • Fully managed SaaS
  • Auto-scales to billions of vectors
  • p95 latency <100ms
  • 99.9% uptime SLA

Use alternatives instead:

  • Chroma: Self-hosted, open-source
  • FAISS: Offline, pure similarity search
  • Weaviate: Self-hosted with more features

Quick start

Installation

pip install pinecone-client

Basic usage

from pinecone import Pinecone, ServerlessSpec

# Initialize
pc = Pinecone(api_key="your-api-key")

# Create index
pc.create_index(
    name="my-index",
    dimension=1536,  # Must match embedding dimension
    metric="cosine",  # or "euclidean", "dotproduct"
    spec=ServerlessSpec(cloud="aws", region="us-east-1")
)

# Connect to index
index = pc.Index("my-index")

# Upsert vectors
index.upsert(vectors=[
    {"id": "vec1", "values": [0.1, 0.2, ...], "metadata": {"category": "A"}},
    {"id": "vec2", "values": [0.3, 0.4, ...], "metadata": {"category": "B"}}
])

# Query
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=5,
    include_metadata=True
)

print(results["matches"])

Core operations

Create index

# Serverless (recommended)
pc.create_index(
    name="my-index",
    dimension=1536,
    metric="cosine",
    spec=ServerlessSpec(
        cloud="aws",         # or "gcp", "azure"
        region="us-east-1"
    )
)

# Pod-based (for consistent performance)
from pinecone import PodSpec

pc.create_index(
    name="my-index",
    dimension=1536,
    metric="cosine",
    spec=PodSpec(
        environment="us-east1-gcp",
        pod_type="p1.x1"
    )
)

Upsert vectors

# Single upsert
index.upsert(vectors=[
    {
        "id": "doc1",
        "values": [0.1, 0.2, ...],  # 1536 dimensions
        "metadata": {
            "text": "Document content",
            "category": "tutorial",
            "timestamp": "2025-01-01"
        }
    }
])

# Batch upsert (recommended)
vectors = [
    {"id": f"vec{i}", "values": embedding, "metadata": metadata}
    for i, (embedding, metadata) in enumerate(zip(embeddings, metadatas))
]

index.upsert(vectors=vectors, batch_size=100)

Query vectors

# Basic query
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=10,
    include_metadata=True,
    include_values=False
)

# With metadata filtering
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=5,
    filter={"category": {"$eq": "tutorial"}}
)

# Namespace query
results = index.query(
    vector=[0.1, 0.2, ...],
    top_k=5,
    namespace="production"
)

# Access results
for match in results["matches"]:
    print(f"ID: {match['id']}")
    print(f"Score: {match['score']}")
    print(f"Metadata: {match['metadata']}")

Metadata filtering

# Exact match
filter = {"category": "tutorial"}

# Comparison
filter = {"price": {"$gte": 100}}  # $gt, $gte, $lt, $lte, $ne

# Logical operators
filter = {
    "$and": [
        {"category": "tutorial"},
        {"difficulty": {"$lte": 3}}
    ]
}  # Also: $or

# In operator
filter = {"tags": {"$in": ["python", "ml"]}}

Namespaces

# Partition data by namespace
index.upsert(
    vectors=[{"id": "vec1", "values": [...]}],
    namespace="user-123"
)

# Query specific namespace
results = index.query(
    vector=[...],
    namespace="user-123",
    top_k=5
)

# List namespaces
stats = index.describe_index_stats()
print(stats['namespaces'])

Hybrid search (dense + sparse)

# Upsert with sparse vectors
index.upsert(vectors=[
    {
        "id": "doc1",
        "values": [0.1, 0.2, ...],  # Dense vector
        "sparse_values": {
            "indices": [10, 45, 123],  # Token IDs
            "values": [0.5, 0.3, 0.8]   # TF-IDF scores
        },
        "metadata": {"text": "..."}
    }
])

# Hybrid query
results = index.query(
    vector=[0.1, 0.2, ...],
    sparse_vector={
        "indices": [10, 45],
        "values": [0.5, 0.3]
    },
    top_k=5,
    alpha=0.5  # 0=sparse, 1=dense, 0.5=hybrid
)

LangChain integration

from langchain_pinecone import PineconeVectorStore
from langchain_openai import OpenAIEmbeddings

# Create vector store
vectorstore = PineconeVectorStore.from_documents(
    documents=docs,
    embedding=OpenAIEmbeddings(),
    index_name="my-index"
)

# Query
results = vectorstore.similarity_search("query", k=5)

# With metadata filter
results = vectorstore.similarity_search(
    "query",
    k=5,
    filter={"category": "tutorial"}
)

# As retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 10})

LlamaIndex integration

from llama_index.vector_stores.pinecone import PineconeVectorStore

# Connect to Pinecone
pc = Pinecone(api_key="your-key")
pinecone_index = pc.Index("my-index")

# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)

# Use in LlamaIndex
from llama_index.core import StorageContext, VectorStoreIndex

storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)

Index management

# List indices
indexes = pc.list_indexes()

# Describe index
index_info = pc.describe_index("my-index")
print(index_info)

# Get index stats
stats = index.describe_index_stats()
print(f"Total vectors: {stats['total_vector_count']}")
print(f"Namespaces: {stats['namespaces']}")

# Delete index
pc.delete_index("my-index")

Delete vectors

# Delete by ID
index.delete(ids=["vec1", "vec2"])

# Delete by filter
index.delete(filter={"category": "old"})

# Delete all in namespace
index.delete(delete_all=True, namespace="test")

# Delete entire index
index.delete(delete_all=True)

Best practices

  1. Use serverless - Auto-scaling, cost-effective
  2. Batch upserts - More efficient (100-200 per batch)
  3. Add metadata - Enable filtering
  4. Use namespaces - Isolate data by user/tenant
  5. Monitor usage - Check Pinecone dashboard
  6. Optimize filters - Index frequently filtered fields
  7. Test with free tier - 1 index, 100K vectors free
  8. Use hybrid search - Better quality
  9. Set appropriate dimensions - Match embedding model
  10. Regular backups - Export important data

Performance

Operation Latency Notes
Upsert ~50-100ms Per batch
Query (p50) ~50ms Depends on index size
Query (p95) ~100ms SLA target
Metadata filter ~+10-20ms Additional overhead

Pricing (as of 2025)

Serverless:

  • $0.096 per million read units
  • $0.06 per million write units
  • $0.06 per GB storage/month

Free tier:

  • 1 serverless index
  • 100K vectors (1536 dimensions)
  • Great for prototyping

Resources