Claude Code Plugins

Community-maintained marketplace

Feedback

RNN+Transformer hybrid with O(n) inference. Linear time, infinite context, no KV cache. Train like GPT (parallel), infer like RNN (sequential). Linux Foundation AI project. Production: Windows, Office, NeMo. RWKV-7 (March 2025). Models up to 14B parameters.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name rwkv-architecture
description RNN+Transformer hybrid with O(n) inference. Linear time, infinite context, no KV cache. Train like GPT (parallel), infer like RNN (sequential). Linux Foundation AI project. Production at Windows, Office, NeMo. RWKV-7 (March 2025). Models up to 14B parameters.
version 1.0.0
author Orchestra Research
license MIT
tags RWKV, Model Architecture, RNN, Transformer Hybrid, Linear Complexity, Infinite Context, Efficient Inference, Linux Foundation, Alternative Architecture
dependencies rwkv, torch, transformers

RWKV - Receptance Weighted Key Value

Quick start

RWKV (RwaKuv) combines Transformer parallelization (training) with RNN efficiency (inference).

Installation:

# Install PyTorch
pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu121

# Install dependencies
pip install pytorch-lightning==1.9.5 deepspeed wandb ninja --upgrade

# Install RWKV
pip install rwkv

Basic usage (GPT mode + RNN mode):

import os
from rwkv.model import RWKV

os.environ["RWKV_JIT_ON"] = '1'
os.environ["RWKV_CUDA_ON"] = '1'  # Use CUDA kernel for speed

# Load model
model = RWKV(
    model='/path/to/RWKV-4-Pile-1B5-20220903-8040',
    strategy='cuda fp16'
)

# GPT mode (parallel processing)
out, state = model.forward([187, 510, 1563, 310, 247], None)
print(out.detach().cpu().numpy())  # Logits

# RNN mode (sequential processing, same result)
out, state = model.forward([187, 510], None)  # First 2 tokens
out, state = model.forward([1563], state)      # Next token
out, state = model.forward([310, 247], state)  # Last tokens
print(out.detach().cpu().numpy())  # Same logits as above!

Common workflows

Workflow 1: Text generation (streaming)

Efficient token-by-token generation:

from rwkv.model import RWKV
from rwkv.utils import PIPELINE

model = RWKV(model='RWKV-4-Pile-14B-20230313-ctx8192-test1050', strategy='cuda fp16')
pipeline = PIPELINE(model, "20B_tokenizer.json")

# Initial prompt
prompt = "The future of AI is"
state = None

# Generate token by token
for token in prompt:
    out, state = pipeline.model.forward(pipeline.encode(token), state)

# Continue generation
for _ in range(100):
    out, state = pipeline.model.forward(None, state)
    token = pipeline.sample_logits(out)
    print(pipeline.decode(token), end='', flush=True)

Key advantage: Constant memory per token (no growing KV cache)

Workflow 2: Long context processing (infinite context)

Process million-token sequences:

model = RWKV(model='RWKV-4-Pile-14B', strategy='cuda fp16')

# Process very long document
state = None
long_document = load_document()  # e.g., 1M tokens

# Stream through entire document
for chunk in chunks(long_document, chunk_size=1024):
    out, state = model.forward(chunk, state)

# State now contains information from entire 1M token document
# Memory usage: O(1) (constant, not O(n)!)

Workflow 3: Fine-tuning RWKV

Standard fine-tuning workflow:

# Training script
import pytorch_lightning as pl
from rwkv.model import RWKV
from rwkv.trainer import RWKVTrainer

# Configure model
config = {
    'n_layer': 24,
    'n_embd': 1024,
    'vocab_size': 50277,
    'ctx_len': 1024
}

# Setup trainer
trainer = pl.Trainer(
    accelerator='gpu',
    devices=8,
    precision='bf16',
    strategy='deepspeed_stage_2',
    max_epochs=1
)

# Train
model = RWKV(config)
trainer.fit(model, train_dataloader)

Workflow 4: RWKV vs Transformer comparison

Memory comparison (1M token sequence):

# Transformer (GPT)
# Memory: O(n²) for attention
# KV cache: 1M × hidden_dim × n_layers × 2 (keys + values)
# Example: 1M × 4096 × 24 × 2 = ~400GB (impractical!)

# RWKV
# Memory: O(1) per token
# State: hidden_dim × n_layers = 4096 × 24 = ~400KB
# 1,000,000× more efficient!

Speed comparison (inference):

# Transformer: O(n) per token (quadratic overall)
# First token: 1 computation
# Second token: 2 computations
# ...
# 1000th token: 1000 computations

# RWKV: O(1) per token (linear overall)
# Every token: 1 computation
# 1000th token: 1 computation (same as first!)

When to use vs alternatives

Use RWKV when:

  • Need very long context (100K+ tokens)
  • Want constant memory usage
  • Building streaming applications
  • Need RNN efficiency with Transformer performance
  • Memory-constrained deployment

Key advantages:

  • Linear time: O(n) vs O(n²) for Transformers
  • No KV cache: Constant memory per token
  • Infinite context: No fixed window limit
  • Parallelizable training: Like GPT
  • Sequential inference: Like RNN

Use alternatives instead:

  • Transformers: Need absolute best performance, have compute
  • Mamba: Want state-space models
  • RetNet: Need retention mechanism
  • Hyena: Want convolution-based approach

Common issues

Issue: Out of memory during training

Use gradient checkpointing and DeepSpeed:

trainer = pl.Trainer(
    strategy='deepspeed_stage_3',  # Full ZeRO-3
    precision='bf16'
)

Issue: Slow inference

Enable CUDA kernel:

os.environ["RWKV_CUDA_ON"] = '1'

Issue: Model not loading

Check model path and strategy:

model = RWKV(
    model='/absolute/path/to/model.pth',
    strategy='cuda fp16'  # Or 'cpu fp32' for CPU
)

Issue: State management in RNN mode

Always pass state between forward calls:

# WRONG: State lost
out1, _ = model.forward(tokens1, None)
out2, _ = model.forward(tokens2, None)  # No context from tokens1!

# CORRECT: State preserved
out1, state = model.forward(tokens1, None)
out2, state = model.forward(tokens2, state)  # Has context from tokens1

Advanced topics

Time-mixing and channel-mixing: See references/architecture-details.md for WKV operation, time-decay mechanism, and receptance gates.

State management: See references/state-management.md for att_x_prev, att_kv, ffn_x_prev states, and numerical stability considerations.

RWKV-7 improvements: See references/rwkv7.md for latest architectural improvements (March 2025) and multimodal capabilities.

Hardware requirements

  • GPU: NVIDIA (CUDA 11.6+) or CPU
  • VRAM (FP16):
    • 169M model: 1GB
    • 430M model: 2GB
    • 1.5B model: 4GB
    • 3B model: 8GB
    • 7B model: 16GB
    • 14B model: 32GB
  • Inference: O(1) memory per token
  • Training: Parallelizable like GPT

Performance (vs Transformers):

  • Speed: Similar training, faster inference
  • Memory: 1000× less for long sequences
  • Scaling: Linear vs quadratic

Resources