Claude Code Plugins

Community-maintained marketplace

Feedback

Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific, and multimodal models. Use for generating embeddings for RAG, semantic search, or similarity tasks. Best for production embedding generation.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name sentence-transformers
description Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific, and multimodal models. Use for generating embeddings for RAG, semantic search, or similarity tasks. Best for production embedding generation.

Sentence Transformers - State-of-the-Art Embeddings

Python framework for sentence and text embeddings using transformers.

When to use Sentence Transformers

Use when:

  • Need high-quality embeddings for RAG
  • Semantic similarity and search
  • Text clustering and classification
  • Multilingual embeddings (100+ languages)
  • Running embeddings locally (no API)
  • Cost-effective alternative to OpenAI embeddings

Metrics:

  • 15,700+ GitHub stars
  • 5000+ pre-trained models
  • 100+ languages supported
  • Based on PyTorch/Transformers

Use alternatives instead:

  • OpenAI Embeddings: Need API-based, highest quality
  • Instructor: Task-specific instructions
  • Cohere Embed: Managed service

Quick start

Installation

pip install sentence-transformers

Basic usage

from sentence_transformers import SentenceTransformer

# Load model
model = SentenceTransformer('all-MiniLM-L6-v2')

# Generate embeddings
sentences = [
    "This is an example sentence",
    "Each sentence is converted to a vector"
]

embeddings = model.encode(sentences)
print(embeddings.shape)  # (2, 384)

# Cosine similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")

Popular models

General purpose

# Fast, good quality (384 dim)
model = SentenceTransformer('all-MiniLM-L6-v2')

# Better quality (768 dim)
model = SentenceTransformer('all-mpnet-base-v2')

# Best quality (1024 dim, slower)
model = SentenceTransformer('all-roberta-large-v1')

Multilingual

# 50+ languages
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')

# 100+ languages
model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')

Domain-specific

# Legal domain
model = SentenceTransformer('nlpaueb/legal-bert-base-uncased')

# Scientific papers
model = SentenceTransformer('allenai/specter')

# Code
model = SentenceTransformer('microsoft/codebert-base')

Semantic search

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('all-MiniLM-L6-v2')

# Corpus
corpus = [
    "Python is a programming language",
    "Machine learning uses algorithms",
    "Neural networks are powerful"
]

# Encode corpus
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)

# Query
query = "What is Python?"
query_embedding = model.encode(query, convert_to_tensor=True)

# Find most similar
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=3)
print(hits)

Similarity computation

# Cosine similarity
similarity = util.cos_sim(embedding1, embedding2)

# Dot product
similarity = util.dot_score(embedding1, embedding2)

# Pairwise cosine similarity
similarities = util.cos_sim(embeddings, embeddings)

Batch encoding

# Efficient batch processing
sentences = ["sentence 1", "sentence 2", ...] * 1000

embeddings = model.encode(
    sentences,
    batch_size=32,
    show_progress_bar=True,
    convert_to_tensor=False  # or True for PyTorch tensors
)

Fine-tuning

from sentence_transformers import InputExample, losses
from torch.utils.data import DataLoader

# Training data
train_examples = [
    InputExample(texts=['sentence 1', 'sentence 2'], label=0.8),
    InputExample(texts=['sentence 3', 'sentence 4'], label=0.3),
]

train_dataloader = DataLoader(train_examples, batch_size=16)

# Loss function
train_loss = losses.CosineSimilarityLoss(model)

# Train
model.fit(
    train_objectives=[(train_dataloader, train_loss)],
    epochs=10,
    warmup_steps=100
)

# Save
model.save('my-finetuned-model')

LangChain integration

from langchain_community.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

# Use with vector stores
from langchain_chroma import Chroma

vectorstore = Chroma.from_documents(
    documents=docs,
    embedding=embeddings
)

LlamaIndex integration

from llama_index.embeddings.huggingface import HuggingFaceEmbedding

embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

from llama_index.core import Settings
Settings.embed_model = embed_model

# Use in index
index = VectorStoreIndex.from_documents(documents)

Model selection guide

Model Dimensions Speed Quality Use Case
all-MiniLM-L6-v2 384 Fast Good General, prototyping
all-mpnet-base-v2 768 Medium Better Production RAG
all-roberta-large-v1 1024 Slow Best High accuracy needed
paraphrase-multilingual 768 Medium Good Multilingual

Best practices

  1. Start with all-MiniLM-L6-v2 - Good baseline
  2. Normalize embeddings - Better for cosine similarity
  3. Use GPU if available - 10× faster encoding
  4. Batch encoding - More efficient
  5. Cache embeddings - Expensive to recompute
  6. Fine-tune for domain - Improves quality
  7. Test different models - Quality varies by task
  8. Monitor memory - Large models need more RAM

Performance

Model Speed (sentences/sec) Memory Dimension
MiniLM ~2000 120MB 384
MPNet ~600 420MB 768
RoBERTa ~300 1.3GB 1024

Resources