Claude Code Plugins

Community-maintained marketplace

Feedback

Fast structured generation and serving for LLMs with RadixAttention prefix caching. Use for JSON/regex outputs, constrained decoding, agentic workflows with tool calls, or when you need 5× faster inference than vLLM with prefix sharing. Powers 300,000+ GPUs at xAI, AMD, NVIDIA, and LinkedIn.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name sglang
description Fast structured generation and serving for LLMs with RadixAttention prefix caching. Use for JSON/regex outputs, constrained decoding, agentic workflows with tool calls, or when you need 5× faster inference than vLLM with prefix sharing. Powers 300,000+ GPUs at xAI, AMD, NVIDIA, and LinkedIn.

SGLang

High-performance serving framework for LLMs and VLMs with RadixAttention for automatic prefix caching.

When to use SGLang

Use SGLang when:

  • Need structured outputs (JSON, regex, grammar)
  • Building agents with repeated prefixes (system prompts, tools)
  • Agentic workflows with function calling
  • Multi-turn conversations with shared context
  • Need faster JSON decoding (3× vs standard)

Use vLLM instead when:

  • Simple text generation without structure
  • Don't need prefix caching
  • Want mature, widely-tested production system

Use TensorRT-LLM instead when:

  • Maximum single-request latency (no batching needed)
  • NVIDIA-only deployment
  • Need FP8/INT4 quantization on H100

Quick start

Installation

# pip install (recommended)
pip install "sglang[all]"

# With FlashInfer (faster, CUDA 11.8/12.1)
pip install sglang[all] flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/

# From source
git clone https://github.com/sgl-project/sglang.git
cd sglang
pip install -e "python[all]"

Launch server

# Basic server (Llama 3-8B)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-8B-Instruct \
    --port 30000

# With RadixAttention (automatic prefix caching)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-8B-Instruct \
    --port 30000 \
    --enable-radix-cache  # Default: enabled

# Multi-GPU (tensor parallelism)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-70B-Instruct \
    --tp 4 \
    --port 30000

Basic inference

import sglang as sgl

# Set backend
sgl.set_default_backend(sgl.OpenAI("http://localhost:30000/v1"))

# Simple generation
@sgl.function
def simple_gen(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", max_tokens=100)

# Run
state = simple_gen.run(question="What is the capital of France?")
print(state["answer"])
# Output: "The capital of France is Paris."

Structured JSON output

import sglang as sgl

@sgl.function
def extract_person(s, text):
    s += f"Extract person information from: {text}\n"
    s += "Output JSON:\n"

    # Constrained JSON generation
    s += sgl.gen(
        "json_output",
        max_tokens=200,
        regex=r'\{"name": "[^"]+", "age": \d+, "occupation": "[^"]+"\}'
    )

# Run
state = extract_person.run(
    text="John Smith is a 35-year-old software engineer."
)
print(state["json_output"])
# Output: {"name": "John Smith", "age": 35, "occupation": "software engineer"}

RadixAttention (Key Innovation)

What it does: Automatically caches and reuses common prefixes across requests.

Performance:

  • 5× faster for agentic workloads with shared system prompts
  • 10× faster for few-shot prompting with repeated examples
  • Zero configuration - works automatically

How it works:

  1. Builds radix tree of all processed tokens
  2. Automatically detects shared prefixes
  3. Reuses KV cache for matching prefixes
  4. Only computes new tokens

Example (Agent with system prompt):

Request 1: [SYSTEM_PROMPT] + "What's the weather?"
→ Computes full prompt (1000 tokens)

Request 2: [SAME_SYSTEM_PROMPT] + "Book a flight"
→ Reuses system prompt KV cache (998 tokens)
→ Only computes 2 new tokens
→ 5× faster!

Structured generation patterns

JSON with schema

@sgl.function
def structured_extraction(s, article):
    s += f"Article: {article}\n\n"
    s += "Extract key information as JSON:\n"

    # JSON schema constraint
    schema = {
        "type": "object",
        "properties": {
            "title": {"type": "string"},
            "author": {"type": "string"},
            "summary": {"type": "string"},
            "sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]}
        },
        "required": ["title", "author", "summary", "sentiment"]
    }

    s += sgl.gen("info", max_tokens=300, json_schema=schema)

state = structured_extraction.run(article="...")
print(state["info"])
# Output: Valid JSON matching schema

Regex-constrained generation

@sgl.function
def extract_email(s, text):
    s += f"Extract email from: {text}\n"
    s += "Email: "

    # Email regex pattern
    s += sgl.gen(
        "email",
        max_tokens=50,
        regex=r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
    )

state = extract_email.run(text="Contact john.doe@example.com for details")
print(state["email"])
# Output: "john.doe@example.com"

Grammar-based generation

@sgl.function
def generate_code(s, description):
    s += f"Generate Python code for: {description}\n"
    s += "```python\n"

    # EBNF grammar for Python
    python_grammar = """
    ?start: function_def
    function_def: "def" NAME "(" [parameters] "):" suite
    parameters: parameter ("," parameter)*
    parameter: NAME
    suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT
    """

    s += sgl.gen("code", max_tokens=200, grammar=python_grammar)
    s += "\n```"

Agent workflows with function calling

import sglang as sgl

# Define tools
tools = [
    {
        "name": "get_weather",
        "description": "Get weather for a location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string"}
            }
        }
    },
    {
        "name": "book_flight",
        "description": "Book a flight",
        "parameters": {
            "type": "object",
            "properties": {
                "from": {"type": "string"},
                "to": {"type": "string"},
                "date": {"type": "string"}
            }
        }
    }
]

@sgl.function
def agent_workflow(s, user_query, tools):
    # System prompt (cached with RadixAttention)
    s += "You are a helpful assistant with access to tools.\n"
    s += f"Available tools: {tools}\n\n"

    # User query
    s += f"User: {user_query}\n"
    s += "Assistant: "

    # Generate with function calling
    s += sgl.gen(
        "response",
        max_tokens=200,
        tools=tools,  # SGLang handles tool call format
        stop=["User:", "\n\n"]
    )

# Multiple queries reuse system prompt
state1 = agent_workflow.run(
    user_query="What's the weather in NYC?",
    tools=tools
)
# First call: Computes full system prompt

state2 = agent_workflow.run(
    user_query="Book a flight to LA",
    tools=tools
)
# Second call: Reuses system prompt (5× faster)

Performance benchmarks

RadixAttention speedup

Few-shot prompting (10 examples in prompt):

  • vLLM: 2.5 sec/request
  • SGLang: 0.25 sec/request (10× faster)
  • Throughput: 4× higher

Agent workflows (1000-token system prompt):

  • vLLM: 1.8 sec/request
  • SGLang: 0.35 sec/request (5× faster)

JSON decoding:

  • Standard: 45 tok/s
  • SGLang: 135 tok/s (3× faster)

Throughput (Llama 3-8B, A100)

Workload vLLM SGLang Speedup
Simple generation 2500 tok/s 2800 tok/s 1.12×
Few-shot (10 examples) 500 tok/s 5000 tok/s 10×
Agent (tool calls) 800 tok/s 4000 tok/s
JSON output 600 tok/s 2400 tok/s

Multi-turn conversations

@sgl.function
def multi_turn_chat(s, history, new_message):
    # System prompt (always cached)
    s += "You are a helpful AI assistant.\n\n"

    # Conversation history (cached as it grows)
    for msg in history:
        s += f"{msg['role']}: {msg['content']}\n"

    # New user message (only new part)
    s += f"User: {new_message}\n"
    s += "Assistant: "
    s += sgl.gen("response", max_tokens=200)

# Turn 1
history = []
state = multi_turn_chat.run(history=history, new_message="Hi there!")
history.append({"role": "User", "content": "Hi there!"})
history.append({"role": "Assistant", "content": state["response"]})

# Turn 2 (reuses Turn 1 KV cache)
state = multi_turn_chat.run(history=history, new_message="What's 2+2?")
# Only computes new message (much faster!)

# Turn 3 (reuses Turn 1 + Turn 2 KV cache)
state = multi_turn_chat.run(history=history, new_message="Tell me a joke")
# Progressively faster as history grows

Advanced features

Speculative decoding

# Launch with draft model (2-3× faster)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-70B-Instruct \
    --speculative-model meta-llama/Meta-Llama-3-8B-Instruct \
    --speculative-num-steps 5

Multi-modal (vision models)

@sgl.function
def describe_image(s, image_path):
    s += sgl.image(image_path)
    s += "Describe this image in detail: "
    s += sgl.gen("description", max_tokens=200)

state = describe_image.run(image_path="photo.jpg")
print(state["description"])

Batching and parallel requests

# Automatic batching (continuous batching)
states = sgl.run_batch(
    [
        simple_gen.bind(question="What is AI?"),
        simple_gen.bind(question="What is ML?"),
        simple_gen.bind(question="What is DL?"),
    ]
)

# All 3 processed in single batch (efficient)

OpenAI-compatible API

# Start server with OpenAI API
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-8B-Instruct \
    --port 30000

# Use with OpenAI client
curl http://localhost:30000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "default",
    "messages": [
      {"role": "system", "content": "You are helpful"},
      {"role": "user", "content": "Hello"}
    ],
    "temperature": 0.7,
    "max_tokens": 100
  }'

# Works with OpenAI Python SDK
from openai import OpenAI
client = OpenAI(base_url="http://localhost:30000/v1", api_key="EMPTY")

response = client.chat.completions.create(
    model="default",
    messages=[{"role": "user", "content": "Hello"}]
)

Supported models

Text models:

  • Llama 2, Llama 3, Llama 3.1, Llama 3.2
  • Mistral, Mixtral
  • Qwen, Qwen2, QwQ
  • DeepSeek-V2, DeepSeek-V3
  • Gemma, Phi-3

Vision models:

  • LLaVA, LLaVA-OneVision
  • Phi-3-Vision
  • Qwen2-VL

100+ models from HuggingFace

Hardware support

NVIDIA: A100, H100, L4, T4 (CUDA 11.8+) AMD: MI300, MI250 (ROCm 6.0+) Intel: Xeon with GPU (coming soon) Apple: M1/M2/M3 via MPS (experimental)

References

Resources